scholarly journals Calcium-dependent cell-cell adhesion molecules common to hepatocytes and teratocarcinoma stem cells.

1983 ◽  
Vol 97 (3) ◽  
pp. 944-948 ◽  
Author(s):  
S I Ogou ◽  
C Yoshida-Noro ◽  
M Takeichi

The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.

1987 ◽  
Vol 105 (6) ◽  
pp. 2501-2510 ◽  
Author(s):  
S Hirano ◽  
A Nose ◽  
K Hatta ◽  
A Kawakami ◽  
M Takeichi

Cadherins are a family of cell-cell adhesion molecules and are divided into subclasses with distinct adhesive specificities and tissue distribution. Here we examined the distribution of cadherins at contact sites between cells expressing the same or different cadherin subclasses. Each cadherin was concentrated at the boundary between cells expressing an identical cadherin subclass, irrespective of the cell types connected. However, such localization decreased or disappeared at the boundary between cells containing different cadherin subclasses. We also found that the localization of cadherins precisely coincided with that of actin bundles; both were detected at the apical region of cell sheets. This co-localization was retained even after cells were either treated with cytochalasin D or extracted with the detergent NP40. These results suggest that each cadherin subclass preferentially interacts with its own molecular type at intercellular boundaries, and that cadherin molecules may be associated with actin-based cytoskeletal elements.


1994 ◽  
Vol 124 (5) ◽  
pp. 729-741 ◽  
Author(s):  
L Hinck ◽  
WJ Nelson ◽  
J Papkoff

Wnt-1 homologs have been identified in invertebrates and vertebrates and play important roles in cellular differentiation and organization. In Drosophila, the products of the segment polarity genes wingless (the Wnt-1 homolog) and armadillo participate in a signal transduction pathway important for cellular boundary formation in embryonic development, but functional interactions between the proteins are unknown. We have examined Wnt-1 function in mammalian cells in which armadillo (beta-catenin and plakoglobin) is known to bind to and regulate cadherin cell adhesion proteins. We show that Wnt-1 expression results in the accumulation of beta-catenin and plakoglobin. In addition, binding of beta-catenin to the cell adhesion protein, cadherin, is stabilized, resulting in a concomitant increase in the strength of calcium-dependent cell-cell adhesion. Thus, a consequence of the functional interaction between Wnt-1 and armadillo family members is the strengthening of cell-cell adhesion, which may lead to the specification of cellular boundaries.


2019 ◽  
Vol 20 (14) ◽  
pp. 3404 ◽  
Author(s):  
Andrea Dalle Vedove ◽  
Federico Falchi ◽  
Stefano Donini ◽  
Aurelie Dobric ◽  
Sebastien Germain ◽  
...  

Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell–cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell–cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell–cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.


1997 ◽  
Vol 110 (8) ◽  
pp. 1013-1022 ◽  
Author(s):  
J.E. Nieset ◽  
A.R. Redfield ◽  
F. Jin ◽  
K.A. Knudsen ◽  
K.R. Johnson ◽  
...  

Cadherins are calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. To function in cell-cell adhesion, the transmembrane cadherin molecule must be associated with the cytoskeleton via cytoplasmic proteins known as catenins. Three catenins, alpha-catenin, beta-catenin and gamma-catenin (also known as plakoglobin), have been identified. beta-catenin or plakoglobin is associated directly with the cadherin; alpha-catenin binds to beta-catenin/plakoglobin and serves to link the cadherin/catenin complex to the actin cytoskeleton. The domains on the cadherin and betacatenin/plakoglobin that are responsible for protein-protein interactions have been mapped. However, little is known about the molecular interactions between alpha-catenin and beta-catenin/plakoglobin or about the interactions between alpha-catenin and the cytoskeleton. In this study we have used the yeast two-hybrid system to map the domains on alpha-catenin that allow it to associate with beta-catenin/plakoglobin and with alpha-actinin. We also identify a region on alpha-actinin that is responsible for its interaction with alpha-catenin. The yeast two-hybrid data were confirmed with biochemical studies.


1994 ◽  
Vol 126 (2) ◽  
pp. 519-527 ◽  
Author(s):  
W M Brieher ◽  
B M Gumbiner

Treatment of Xenopus animal pole tissue with activin results in the induction of mesodermal cell types and a dramatic elongation of the tissue. The morphogenetic movements involved in the elongation appear similar to those in normal gastrulation, which is driven by cell rearrangement and cell intercalations. We have used this system to explore the potential regulation of cell-cell adhesion and cadherin function during morphogenesis. Quantitative blastomere aggregation assays revealed that activin induction reduced the calcium-dependent adhesion between blastomeres. Activin-induced blastomeres formed smaller aggregates, and a greater proportion of the population remained as single cells compared to uninduced blastomeres. The aggregation was mediated by C-cadherin because C-cadherin was present in the blastomeres during the aggregation assay, and monoclonal antibodies against C-cadherin inhibited the calcium-dependent aggregation of blastomeres. E-cadherin was not detectable until after the completion of the assay and, therefore, does not explain the adhesive differences between induced and uninduced blastomeres. L cells stably expressing C-cadherin (LC cells) were used to demonstrate that C-cadherin activity was specifically altered after activin induction. Blastomeres induced with activin bound fewer LC cells than uninduced blastomers. L cells not expressing C-cadherin did not adhere to blastomeres. The changes in C-cadherin-mediated adhesion occurred without detectable changes in the steady-state levels of C-cadherin or the amount of C-cadherin present on the surface of the cell. Immunoprecipitation of C-cadherin and its associated catenins revealed that the ratio of C-cadherin and the catenins was not altered by activin induction. These results demonstrate that activin decreases the adhesive function of existing C-cadherin molecules on the surface of blastomeres and suggest that decreased cadherin mediated cell-cell adhesion is associated with increased morphogenetic movement.


1992 ◽  
Vol 118 (3) ◽  
pp. 671-679 ◽  
Author(s):  
K A Knudsen ◽  
M J Wheelock

E- and N-cadherin are members of a family of calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, the transmembrane cadherins self-associate, while, intracellularly, they interact with the actin-based cytoskeleton. Several intracellular proteins, collectively termed catenins, have been noted to co-immunoprecipitate with E- and N-cadherin and are thought to be involved in linking the cadherins to the cytoskeleton. Two catenins have been identified recently: a 102-kD vinculin-like protein (alpha-catenin) and a 92-kD Drosophila armadillo/plakoglobin-like protein (beta-catenin). Here, we show that plakoglobin, or an 83-kD plakoglobin-like protein, co-immunoprecipitates and colocalizes with both E- and N-cadherin. The 83-kD protein is immunologically distinct from the 92-kD beta-catenin and, because of its molecular mass, likely represents the cadherin-associated protein called gamma-catenin. Thus, two different members of a plakoglobin family associate with N- and E-cadherin and, together with the 102-kD alpha-catenin, appear to participate in linking the cadherins to the actin-based cytoskeleton.


1997 ◽  
Vol 137 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
Vania M.M. Braga ◽  
Laura M. Machesky ◽  
Alan Hall ◽  
Neil A. Hotchin

Cadherins are calcium-dependent cell–cell adhesion molecules that require the interaction of the cytoplasmic tail with the actin cytoskeleton for adhesive activity. Because of the functional relationship between cadherin receptors and actin filament organization, we investigated whether members of the Rho family of small GTPases are necessary for cadherin adhesion. In fibroblasts, the Rho family members Rho and Rac regulate actin polymerization to produce stress fibers and lamellipodia, respectively. In epithelial cells, we demonstrate that Rho and Rac are required for the establishment of cadherin-mediated cell–cell adhesion and the actin reorganization necessary to stabilize the receptors at sites of intercellular junctions. Blocking endogenous Rho or Rac selectively removed cadherin complexes from junctions induced for up to 3 h, while desmosomes were not perturbed. In addition, withdrawal of cadherins from intercellular junctions temporally precedes the removal of CD44 and integrins, other microfilament-associated receptors. Our data showed that the concerted action of Rho and Rac modulate the establishment of cadherin adhesion: a constitutively active form of Rac was not sufficient to stabilize cadherindependent cell–cell contacts when endogenous Rho was inhibited. Upon induction of calcium-dependent intercellular adhesion, there was a rapid accumulation of actin at sites of cell–cell contacts, which was prevented by blocking cadherin function, Rho or Rac activity. However, if cadherin complexes are clustered by specific antibodies attached to beads, actin recruitment to the receptors was perturbed by inhibiting Rac but not Rho. Our results provide new insights into the role of the small GTPases in the cadherin-dependent cell– cell contact formation and the remodelling of actin filaments in epithelial cells.


2006 ◽  
Vol 21 (4) ◽  
pp. 1-4 ◽  
Author(s):  
Kaveh Barami ◽  
Laura Lewis-Tuffin ◽  
Panos Z. Anastasiadis

✓Cell–cell adhesion is a crucial process occurring during normal tissue development. Cadherins are calcium-dependent cell-surface adhesion molecules involved in cell–cell adhesion. They reorganize the actin cytoskeleton via interaction with the catenins. Modulation of the cadherin/catenin system plays a role in cell motility. Dysregulation of the cadherin/catenin assembly has been implicated in various cancers. In this review, the authors summarize all studies focusing on the role of cadherins and catenins in glioma formation. With the emergence of recent data regarding gliomas' putative cell of origin, elucidation of the role of cadherins/catenins in gliomagenesis will become important in devising new therapeutic approaches against such deadly cancers.


Sign in / Sign up

Export Citation Format

Share Document