Faculty Opinions recommendation of Drug-Free Approach To Study the Unusual Cell Cycle of Giardia intestinalis.

Author(s):  
David Leitsch
mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Kathleen Horlock-Roberts ◽  
Chase Reaume ◽  
Guillem Dayer ◽  
Christine Ouellet ◽  
Nicholas Cook ◽  
...  

ABSTRACT Giardias are among the most commonly reported intestinal protozoa in the world, with infections seen in humans and over 40 species of animals. The life cycle of giardia alternates between the motile trophozoite and the infectious cyst. The regulation of the cell cycle controls the proliferation of giardia trophozoites during an active infection and contains the restriction point for the differentiation of trophozoite to cyst. Here, we developed counterflow centrifugal elutriation as a drug-free method to obtain fractions of giardia cultures enriched in cells from the G1, S, and G2 stages of the cell cycle. Analysis of these fractions showed that the cells do not show side effects associated with the drugs used for synchronization of giardia cultures. Therefore, counterflow centrifugal elutriation would advance studies on key regulatory events during the giardia cell cycle and identify potential drug targets to block giardia proliferation and transmission. Giardia intestinalis is a protozoan parasite that causes giardiasis, a form of severe and infectious diarrhea. Despite the importance of the cell cycle in the control of proliferation and differentiation during a giardia infection, it has been difficult to study this process due to the absence of a synchronization procedure that would not induce cellular damage resulting in artifacts. We utilized counterflow centrifugal elutriation (CCE), a size-based separation technique, to successfully obtain fractions of giardia cultures enriched in G1, S, and G2. Unlike drug-induced synchronization of giardia cultures, CCE did not induce double-stranded DNA damage or endoreplication. We observed increases in the appearance and size of the median body in the cells from elutriation fractions corresponding to the progression of the cell cycle from early G1 to late G2. Consequently, CCE could be used to examine the dynamics of the median body and other structures and organelles in the giardia cell cycle. For the cell cycle gene expression studies, the actin-related gene was identified by the program geNorm as the most suitable normalizer for reverse transcription-quantitative PCR (RT-qPCR) analysis of the CCE samples. Ten of 11 suspected cell cycle-regulated genes in the CCE fractions have expression profiles in giardia that resemble those of higher eukaryotes. However, the RNA levels of these genes during the cell cycle differ less than 4-fold to 5-fold, which might indicate that large changes in gene expression are not required by giardia to regulate the cell cycle. IMPORTANCE Giardias are among the most commonly reported intestinal protozoa in the world, with infections seen in humans and over 40 species of animals. The life cycle of giardia alternates between the motile trophozoite and the infectious cyst. The regulation of the cell cycle controls the proliferation of giardia trophozoites during an active infection and contains the restriction point for the differentiation of trophozoite to cyst. Here, we developed counterflow centrifugal elutriation as a drug-free method to obtain fractions of giardia cultures enriched in cells from the G1, S, and G2 stages of the cell cycle. Analysis of these fractions showed that the cells do not show side effects associated with the drugs used for synchronization of giardia cultures. Therefore, counterflow centrifugal elutriation would advance studies on key regulatory events during the giardia cell cycle and identify potential drug targets to block giardia proliferation and transmission.


2008 ◽  
Vol 7 (4) ◽  
pp. 569-574 ◽  
Author(s):  
Marianne K. Poxleitner ◽  
Scott C. Dawson ◽  
W. Zacheus Cande

ABSTRACT Giardia intestinalis is a ubiquitous intestinal protozoan parasite and has been proposed to represent the earliest diverging lineage of extant eukaryotes. Despite the importance of Giardia as a model organism, research on Giardia has been hampered by an inability to achieve cell cycle synchrony for in vitro cultures. This report details successful methods for attaining cell cycle synchrony in Giardia cultures. The research presented here demonstrates reversible cell cycle arrest in G1/S and G2/M with aphidicolin and nocodazole, respectively. Following synchronization, cells were able to recover completely from drug treatment and remained viable and maintained synchronous growth for 6 h. These techniques were used to synchronize Giardia cultures to increase the percentages of mitotic spindles in the cultures. This method of synchronization will enhance our ability to study cell cycle-dependent processes in G. intestinalis.


2002 ◽  
Vol 49 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Przemyslaw Bozko ◽  
Annette K Larsen ◽  
Eric Raymond ◽  
Andrzej Skladanowski

We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.


2013 ◽  
Vol 187 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Chase Reaume ◽  
Bradley Moore ◽  
Paula Hernández ◽  
Antonio Ruzzini ◽  
Matthew Chlebus ◽  
...  

1975 ◽  
Vol 66 (3) ◽  
pp. 521-530 ◽  
Author(s):  
A Krishan ◽  
K Paika ◽  
E Frei

Flow microfluorometric analysis of human lymphoid cells exposed in vitro to cytostatic concentrations of podophyllotoxin (0.01-5 mug/ml for 24 h) shows that a major part of this population (40-60%) has the DNA content of cells in the G2-M part of the cell cycle, and that approximately 60% of these cells are arrested in mitosis. Although a similar pattern of DNA distribution is seen in cultures exposed to cytostatic concentrations of VM-26(0.01 mug/ml) and VP--16-213(0.1 mug/ml), no mitotic cells are seen in these cultures. Exposure to higher concentrations: of VM-26 (0.1 mug/ml) and VP-16-213 (1.0 mug/ml) inhibits cell cycle traverse, and after 24 hr of exposure a major part of the population is arrested with the DNA content of cell in the S part of the cell cycle. Exposure to higher drug concentrations leads to a reduction in the number of cells with the late S-G2DNA content. Whereas the cell cycle block induced by cytostatic concentrations of podophyllotoxin (0.01 mug/ml) is readily reversible by reincubation of cells in drug-free medium, cells blocked by VM-26 and VP-16-213 are unable to resume cell-cycle traverse under similar conditions.


2014 ◽  
Vol 25 (18) ◽  
pp. 2774-2787 ◽  
Author(s):  
Juan-Jesus Vicente ◽  
W. Zacheus Cande

The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered.


2010 ◽  
Vol 124 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Klára Hofštetrová ◽  
Magdalena Uzlíková ◽  
Pavla Tůmová ◽  
Karin Troell ◽  
Staffan G. Svärd ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Thomas Fischer ◽  
Astrid Katzer ◽  
Dmitri Sisario ◽  
Tessa Korsa ◽  
...  

Abstract Background Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. Methods Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. Results We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~ 80% vs. ~ 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. Conclusions The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Irwin I. Singer

Our previous results indicate that two types of fibronectin-cytoskeletal associations may be formed at the fibroblast surface: dorsal matrixbinding fibronexuses generated in high serum (5% FBS) cultures, and ventral substrate-adhering units formed in low serum (0.3% FBS) cultures. The substrate-adhering fibronexus consists of at least vinculin (VN) and actin in its cytoplasmic leg, and fibronectin (FN) as one of its major extracellular components. This substrate-adhesion complex is localized in focal contacts, the sites of closest substratum approach visualized with interference reflection microscopy, which appear to be the major points of cell-tosubstrate adhesion. In fibroblasts, the latter substrate-binding complex is characteristic of cultures that are arrested at the G1 phase of the cell cycle due to the low serum concentration in their medium. These arrested fibroblasts are very well spread, flattened, and immobile.


Sign in / Sign up

Export Citation Format

Share Document