intrinsic radiosensitivity
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 2)

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6296
Author(s):  
Simona Marzi ◽  
Alessia Farneti ◽  
Laura Marucci ◽  
Pasqualina D’Urso ◽  
Antonello Vidiri ◽  
...  

The advent of quantitative imaging in personalized radiotherapy (RT) has offered the opportunity for a better understanding of individual variations in intrinsic radiosensitivity. We aimed to assess the role of magnetic resonance imaging (MRI) biomarkers, patient-related factors, and treatment-related factors in predicting xerostomia 12 months after RT (XER12) in patients affected by oropharyngeal squamous cell carcinoma (OSCC). Patients with locally advanced OSCC underwent diffusion-weighted imaging (DWI) and dynamic-contrast enhanced MRI at baseline; DWI was repeated at the 10th fraction of RT. The Radiation Therapy Oncology Group (RTOG) toxicity scale was used to evaluate salivary gland toxicity. Xerostomia-related questionnaires (XQs) were administered weekly during and after RT. RTOG toxicity ≥ grade 2 at XER12 was considered as endpoint to build prediction models. A Decision Tree classification learner was applied to build the prediction models following a five-fold cross-validation. Of the 89 patients enrolled, 63 were eligible for analysis. Thirty-six (57.1%) and 21 (33.3%) patients developed grade 1 and grade 2 XER12, respectively. Including only baseline variables, the model based on DCE-MRI and V65 (%) (volume of both glands receiving doses ≥ 65 Gy) had a fair accuracy (77%, 95% CI: 66.5–85.4%). The model based on V65 (%) and XQ-Intmid (integral of acute XQ scores from the start to the middle of RT) reached the best accuracy (81%, 95% CI: 71–88.7%). In conclusion, non-invasive biomarkers from DCE-MRI, in combination with dosimetric variables and self-assessed acute XQ scores during treatment may help predict grade 2 XER12 with a fair to good accuracy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Thomas Fischer ◽  
Astrid Katzer ◽  
Dmitri Sisario ◽  
Tessa Korsa ◽  
...  

Abstract Background Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. Methods Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. Results We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~ 80% vs. ~ 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. Conclusions The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism.


2021 ◽  
Vol 11 (8) ◽  
pp. 796
Author(s):  
James Meehan ◽  
Mark Gray ◽  
Carlos Martínez-Pérez ◽  
Charlene Kay ◽  
Jimi C. Wills ◽  
...  

Radiotherapy (RT) is an important treatment modality for the local control of breast cancer (BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells that either possess intrinsic radioresistance or develop resistance during treatment can reduce its efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers that can predict and/or monitor a tumour’s response to radiation. Here we describe a novel method to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on conditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line (MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene expression experiments, using both radiosensitive and radioresistant cells, to identify a signature related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using CM samples from cell lines confirmed a significant increase in the release of each candidate biomarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry showed that higher intracellular protein levels of the biomarkers were associated with greater radiosensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recurrence-free survival times, indicating that these two candidate biomarkers have the potential to predict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for the identification of biomarkers that may have a potential clinical role in personalising and optimising RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to benefit.


2021 ◽  
Vol 11 ◽  
Author(s):  
Stephen Joseph McMahon ◽  
Kevin M. Prise

Variations in the intrinsic radiosensitivity of different cells to ionizing radiation is now widely believed to be a significant driver in differences in response to radiotherapy. While the mechanisms of radiosensitivity have been extensively studied in the laboratory, there are a lack of models which integrate this knowledge into a predictive framework. This paper presents an overview of the Medras model, which has been developed to provide a mechanistic framework in which different radiation responses can be modelled and individual responses predicted. This model simulates the repair of radiation-induced DNA damage, incorporating the overall kinetics of repair and its fidelity, to predict a range of biological endpoints including residual DNA damage, mutation, chromosome aberration, and cell death. Validation of this model against a range of exposure types is presented, including considerations of varying radiation qualities and dose-rates. This approach has the potential to inform new tools to deliver mechanistic predictions of radiation sensitivity, and support future developments in treatment personalization.


Author(s):  
V. A. Vinnikov ◽  
T. V. Rubleva

Background. Among cancer patients receiving radiotherapy about 5–15 % may have adverse reactions in normal tissues and organs that limit their treatment in a full, originally scheduled regimen. The development of biomarkers and assays for radiation oncology allowing the prediction of patients’ normal tissue toxicity requires a lot of resourses, threfore its current status amd potential directions for future research have to be periodically analyzed and re-evaluated. Purpose – this review summarizes the methodological approaches and developments in the area of functional laboratory assays based on ex vivo cell survival for the prediction of the individual clinical radiosensitivity. Materials and methods. Data for the analysis and systematization were obtained from the full-text articles published in peer review international scientific journals (in English) in 1990–2020, which were selected by the extensive search in PubMed information database and cross references on the topic “Functional cellular tests for intrinsic radiosensitivity to predict adverse radiation effects and radiotherapy complications”. Results. In theory, it might be expected that clonogenic cell survival after ex vivo irradiation can surve as the best individual predictor of radiation toxicity, as it is an integral indicator of cell damage and decline of their regenerative potential. Tendentially, fibroblasts, as a test system for such studies, did not show significant advantages over lymphocytes either in detecting inter-individual variations in the intrinsic cellular radiosensitivity or in predicting clinical radiation toxicity, even for that in skin. It was found that clonogenic cell survival assay, being very time consuming and technically demanding, also suffers from the lack of sensitivity and specificity, essential uncertainty and low reproducibility of the results, and thus is not suitable for the sceening for the abnormal intrinsic radiosensitivity. However, this type of assays is applicable for the radiobiological expertise post factum in individual cases with unexpected, extreme radiation lesions. Radiation-induced lymphocyte apoptosis assay seems to be more promising however still requires further fundamental research for better understanding of its background and more validation studies in order to assess the optimum patient groups, radiotherapy regimens and adverse effects for its confident use in clinical practice. Changes in the regulation of cell cycle check-points (radiationinduced delay) ex vivo can have either positive or inverted association, or no correlation with clinical radiation responses in tissues, thus so far cannot be included in the toolbox of applied radiobiological tests. Conclusions. To date, in the practice of clinical radiobiology, there are no fully validated and standardized functional tests based on the cell survival after ex vivo irradiation, which would allow a sufficiently accurate prediction of adverse radiation effects in normal tissues of radiotherapy patients. In general, ex vivo tests based on the evaluation of only one form of cell death in one cell type are not fully reliable as a “stand alone” assay, because different pathways of cell death probably play different roles and show different dose response within the overal reaction of the irradiated tissue or critical organ. Such tests should become a part of the multiparametric predictive platforms.


2020 ◽  
Vol 21 (24) ◽  
pp. 9367
Author(s):  
Sven de Mey ◽  
Inès Dufait ◽  
Heng Jiang ◽  
Cyril Corbet ◽  
Hui Wang ◽  
...  

Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.


2020 ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Thomas Fischer ◽  
Astrid Katzer ◽  
Dmitri Sisario ◽  
Tessa Korsa ◽  
...  

Abstract Background: Radiotherapy is routinely used to combat glioblastoma multiforme (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells.Methods: Two isogenic GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations.Results: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. In MO59K cells, combined PI-103 and radiation treatment induced much higher γH2AX expression measured by Western blot as compared to MO59J. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP. In contrast, PI-103-treated MO59J cells showed an increased level of LC3BII, indicative of cytoprotective autophagy. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~80% vs. ~50% in MO59K), which was, however, partially abolished by PI-103 thus allowing cell-cycle progression of a fraction of cells. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells.Conclusions: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism. Future research on an extended cell panel should focus on finding ways to enhance the radiosensitivity of cell lines with deficiencies in DNA-PK and ATM, the key proteins involved in the DNA damage response.


Sign in / Sign up

Export Citation Format

Share Document