mitotic checkpoint complex
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 1)

Oncogene ◽  
2021 ◽  
Author(s):  
Lan Yu ◽  
Yue Lang ◽  
Ching-Cheng Hsu ◽  
Wei-Min Chen ◽  
Jui-Chung Chiang ◽  
...  

AbstractChromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP’s interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.


2021 ◽  
Author(s):  
Anand Banerjee ◽  
Chu Chen ◽  
Lauren Humphrey ◽  
John J. Tyson ◽  
Ajit Joglekar

During mitosis, unattached kinetochores in a dividing cell generate the anaphase-inhibitory Mitotic Checkpoint Complex (MCC) to activate the Spindle Assembly Checkpoint (SAC) and delay anaphase onset. To generate MCC, these kinetochores recruit MCC constituent proteins including the protein BubR1. The increased local concentration of BubR1 resulting from this recruitment should enhance MCC generation, but prior studies found this not to be the case. We analyzed the contribution of two BubR1 recruitment pathways to MCC generation in human kinetochores. For these analyses, we isolated a subset of the MCC generation reactions to the cytosol using ectopic SAC activation systems. These analyses and mathematical modeling show that BubR1 binding to the SAC protein Bub1, but not to the 'KI' motifs in the kinetochore protein Knl1, significantly enhances the rate of Bub1-mediated MCC generation in the kinetochore. Our work also suggests that Bub1-BubR1 stoichiometry will strongly influence the dose-response characteristics of SAC signaling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Zhao ◽  
Hui Li ◽  
Guangxin Chen ◽  
Lijun Du ◽  
Peiyan Xu ◽  
...  

Abstract Background Aneuploidy is the most frequent cause of early-embryo abortion. Any defect in chromosome segregation would fail to satisfy the spindle assembly checkpoint (SAC) during mitosis, halting metaphase and causing aneuploidy. The mitotic checkpoint complex (MCC), comprising MAD1, MAD2, Cdc20, BUBR1 and BUB3, plays a vital role in SAC activation. Studies have confirmed that overexpression of MAD2 and BUBR1 can facilitate correct chromosome segregation and embryo stability. Research also proves that miR-125b negatively regulates MAD1 expression by binding to its 3′UTR. However, miR-125b, Mad1 and Bub3 gene expression in aneuploid embryos of spontaneous abortion has not been reported to date. Methods In this study, embryonic villi from miscarried pregnancies were collected and divided into two groups (aneuploidy and euploidy) based on High-throughput ligation-dependent probe amplification (HLPA) and Fluorescence in situ hybridization (FISH) analyses. RNA levels of miR-125b, MAD1 and BUB3 were detected by Quantitative real-time PCR (qRT-PCR); protein levels of MAD1 and BUB3 were analysed by Western blotting. Results statistical analysis (p < 0.05) showed that miR-125b and BUB3 were significantly down-regulated in the aneuploidy group compared to the control group and that MAD1 was significantly up-regulated. Additionally, the MAD1 protein level was significantly higher in aneuploidy abortion villus, but BUB3 protein was only mildly increased. Correlation analysis revealed that expression of MAD1 correlated negatively with miR-125b. Conclusion These results suggest that aneuploid abortion correlates positively with MAD1 overexpression, which might be caused by insufficient levels of miR-125b. Taken together, our findings first confirmed the negative regulatory mode between MAD1 and miR-125b, providing a basis for further mechanism researches in aneuploid abortion.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Jamin B. Hein ◽  
Dimitriya H. Garvanska ◽  
Isha Nasa ◽  
Arminja N. Kettenbach ◽  
Jakob Nilsson

Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by cyclin B1–Cdk1 independently inhibits APC/C–Cdc20 activation. This creates a conundrum for how Cdc20 is activated before cyclin B1 degradation. Here, we show that the MCC component BubR1 harbors both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically, BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest, arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively, our work reveals how Cdc20 can be dephosphorylated in the presence of cyclin B1-Cdk1 activity without causing premature anaphase onset.


2021 ◽  
Vol 21 ◽  
Author(s):  
Ana C. Henriques ◽  
Patrícia M. A. Silva ◽  
Bruno Sarmento ◽  
Hassan Bousbaa

: The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents mitotic exit at the metaphase-to-anaphase transition until all chromosomes have established correct bipolar attachment to spindle microtubules. Activation of SAC relies on the assembly of the mitotic checkpoint complex (MCC), which requires conformational change from inactive open Mad2 (O-Mad2) to the active closed Mad2 (C-Mad2) at unattached kinetochores. The Mad2-binding protein p31comet plays a key role in controlling timely mitotic exit by promoting SAC silencing, through preventing Mad2 activation and promoting MCC disassembly. Besides, increasing evidences highlight the p31comet potential as target for cancer therapy. Here, we provide an updated overview of the functional significance of p31comet in mitotic progression, and discuss the potential of deregulated expression of p31comet in cancer and in therapeutic strategies.


Science ◽  
2020 ◽  
Vol 371 (6524) ◽  
pp. 67-71 ◽  
Author(s):  
Valentina Piano ◽  
Amal Alex ◽  
Patricia Stege ◽  
Stefano Maffini ◽  
Gerardo A. Stoppiello ◽  
...  

Open (O) and closed (C) topologies of HORMA-domain proteins are respectively associated with inactive and active states of fundamental cellular pathways. The HORMA protein O-MAD2 converts to C-MAD2 upon binding CDC20. This is rate limiting for assembly of the mitotic checkpoint complex (MCC), the effector of a checkpoint required for mitotic fidelity. A catalyst assembled at kinetochores accelerates MAD2:CDC20 association through a poorly understood mechanism. Using a reconstituted SAC system, we discovered that CDC20 is an impervious substrate for which access to MAD2 requires simultaneous docking on several sites of the catalytic complex. Our analysis indicates that the checkpoint catalyst is substrate assisted and promotes MCC assembly through spatially and temporally coordinated conformational changes in both MAD2 and CDC20. This may define a paradigm for other HORMA-controlled systems.


2020 ◽  
Author(s):  
Jamin Hein ◽  
Dimitriya H Garvanska ◽  
Isha Nasa ◽  
Arminja Kettenbach ◽  
Jakob Nilsson

Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets Cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by Cyclin B1-Cdk1 independently inhibits APC/C-Cdc20 activation. This creates a conundrum for how Cdc20 gets activated prior to Cyclin B1 degradation. Here we show that the MCC component BubR1 harbours both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively our work reveals how Cdc20 can be dephosphorylated in the presence of Cyclin B1-Cdk1 activity without causing premature anaphase onset.


2020 ◽  
Author(s):  
Juan Zhao ◽  
Hui Li ◽  
Haibo Li ◽  
Guangxin Chen ◽  
LiJun Du ◽  
...  

Abstract Background: Aneuploid is the most frequent cause of early embryo abortion, and any defect in chromosome segregation would fail to satisfy spindle assembly checkpoint (SAC) during mitosis, which could lead to the halted metaphase and aneuploid occurrence. Mitotic checkpoint complex(MCC), a complex compound of MAD1、MAD2、Cdc20、BUBR1 and BUB3, plays an important role in SAC activation. Studies have confirmed that the overexpression of MAD2 and BUBR1 can facilitate the correct chromosome segregation and embryo stability. Research identifications also proved that miR-125b negatively regulated MAD1 expression by binding to its 3’UTR. However, the expression of mir125b, MAD1 and BUB3 genes in aneuploidy embryos of spontaneous abortion has not been reported.Methods: In this study, embryonic villi from miscarriage pregnant women were collected and divided into two groups (aneuploidy and euploidy) by HLPA and FISH analysis. The RNA levels of mir125b, MAD1 and BUB3 were detected through QRT-PCR, while Western blot was further used to analyze the protein levels of MAD1 and BUB3.Results: SPSS 17.0 statistical analysis(P<0.05) showed that mir125b and BUB3 were significantly down-regulated in aneuploidy group compared to the control group, MAD1 was significantly up-regulated in RNA level; Additionally, MAD1 protein level was also significantly higher while BUB3 was mildly increased in aneuploidy abortion villus. Correlation analysis revealed that the expression of MAD1 was negatively correlated with Mir125b.Conclusion: these results suggested that aneuploid abortion was positively correlated with MAD1 overexpression which might be caused by insufficient mir125b.


Author(s):  
Sharon Kaisari ◽  
Pnina Shomer ◽  
Tamar Ziv ◽  
Danielle Sitry-Shevah ◽  
Shirly Miniowitz-Shemtov ◽  
...  

The Mad2-binding protein p31comet has important roles in the inactivation of the mitotic checkpoint system, which delays anaphase until chromosomes attach correctly to the mitotic spindle. The activation of the checkpoint promotes the assembly of a Mitotic Checkpoint Complex (MCC), which inhibits the action of the ubiquitin ligase APC/C (Anaphase-Promoting Complex/Cyclosome) to degrade inhibitors of anaphase initiation. The inactivation of the mitotic checkpoint requires the disassembly of MCC. p31comet promotes the disassembly of mitotic checkpoint complexes by liberating their Mad2 component in a joint action with the ATPase TRIP13. Here, we investigated the regulation of p31comet action. The release of Mad2 from checkpoint complexes in extracts from nocodazole-arrested HeLa cells was inhibited by Polo-like kinase 1 (Plk1), as suggested by the effects of selective inhibitors of Plk1. Purified Plk1 bound to p31comet and phosphorylated it, resulting in the suppression of its activity (with TRIP13) to disassemble checkpoint complexes. Plk1 phosphorylated p31comet on S102, as suggested by the prevention of the phosphorylation of this residue in checkpoint extracts by the selective Plk1 inhibitor BI-2536 and by the phosphorylation of S102 with purified Plk1. An S102A mutant of p31comet had a greatly decreased sensitivity to inhibition by Plk1 of its action to disassemble mitotic checkpoint complexes. We propose that the phosphorylation of p31comet by Plk1 prevents a futile cycle of MCC assembly and disassembly during the active mitotic checkpoint.


Sign in / Sign up

Export Citation Format

Share Document