scholarly journals Opposite effects of the triple target (DNA-PK/PI3K/mTOR) inhibitor PI-103 on the radiation sensitivity of glioblastoma cell lines proficient and deficient in DNA-PKcs

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Thomas Fischer ◽  
Astrid Katzer ◽  
Dmitri Sisario ◽  
Tessa Korsa ◽  
...  

Abstract Background Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. Methods Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. Results We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~ 80% vs. ~ 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. Conclusions The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism.

2020 ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Thomas Fischer ◽  
Astrid Katzer ◽  
Dmitri Sisario ◽  
Tessa Korsa ◽  
...  

Abstract Background: Radiotherapy is routinely used to combat glioblastoma multiforme (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells.Methods: Two isogenic GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations.Results: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. In MO59K cells, combined PI-103 and radiation treatment induced much higher γH2AX expression measured by Western blot as compared to MO59J. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP. In contrast, PI-103-treated MO59J cells showed an increased level of LC3BII, indicative of cytoprotective autophagy. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~80% vs. ~50% in MO59K), which was, however, partially abolished by PI-103 thus allowing cell-cycle progression of a fraction of cells. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells.Conclusions: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism. Future research on an extended cell panel should focus on finding ways to enhance the radiosensitivity of cell lines with deficiencies in DNA-PK and ATM, the key proteins involved in the DNA damage response.


2019 ◽  
Vol 8 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Lu Wang ◽  
Boyu Mao ◽  
Huixin He ◽  
Yu Shang ◽  
Yufang Zhong ◽  
...  

TCS and MTCS could induce oxidative DNA damage, apoptosis, and cell cycle arrest and initiate the DNA damage repair process by regulating different signal pathways.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2643
Author(s):  
Fuguang Zhao ◽  
Olesya Vakhrusheva ◽  
Sascha D. Markowitsch ◽  
Kimberly S. Slade ◽  
Igor Tsaur ◽  
...  

Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1–100 µM). Cell growth, proliferation, and cell cycle phases were investigated, as were apoptosis, necrosis, ferroptosis, autophagy, metabolic activity, and protein expression. Exposure to ART induced a time- and dose-dependent significant inhibition of tumor cell growth and proliferation of parental and cisplatin-resistant BCa cells. This inhibition was accompanied by a G0/G1 phase arrest and modulation of cell cycle regulating proteins. ART induced apoptos is by enhancing DNA damage, especially in the resistant cells. ART did not induce ferroptosis, but led to a disturbance of mitochondrial respiration and ATP generation. This impairment correlated with autophagy accompanied by a decrease in LC3B-I and an increase in LC3B-II. Since ART significantly inhibits proliferative and metabolic aspects of cisplatin-sensitive and cisplatin-resistant BCa cells, it may hold potential in treating advanced and therapy-resistant BCa.


2017 ◽  
Vol 37 (3) ◽  
pp. 413-426 ◽  
Author(s):  
Shir Barshishat ◽  
Maya Elgrably‐Weiss ◽  
Jonathan Edelstein ◽  
Jens Georg ◽  
Sutharsan Govindarajan ◽  
...  

2011 ◽  
Vol 18 (5) ◽  
pp. 555-564 ◽  
Author(s):  
Antje Klagge ◽  
Carl Weidinger ◽  
Kerstin Krause ◽  
Beate Jessnitzer ◽  
Monika Gutknecht ◽  
...  

Members of the forkhead box-O (FOXO) transcription factors family play an important role in stress defence. FOXO3 deregulation has recently been identified as a hallmark of thyroid carcinogenesis. In this study, we explore the role of FOXO3 in defence of oxidative stress in normal thyrocytes. Stable rat thyroid cell lines were generated expressing either the human wild-type FOXO3, a constitutively activating FOXO3 mutant, or the empty control vector. Cell clones were characterised for proliferation, function and morphology. Hydrogen peroxide and UV irradiation were used to induce oxidative stress. Changes in FOXO3 activity, induction of cell cycle arrest or apoptosis and kinetics of DNA damage repair were analysed. Upregulation of FOXO3 in thyrocytes resulted in decreased proliferation and changes in morphology, but did not affect differentiation. Hydrogen peroxide stimulated the expression of the FOXO3 target genes growth arrest and DNA damage-inducible protein 45 α (Gadd45α) and Bcl-2 interacting mediator of cell death (BIM) and induced programmed cell death in cells with overexpression of the human wild-type FOXO3. In contrast, UV irradiation resulted in a distinct cellular response with activation of FOXO3-c-Jun-N-terminal kinase-Gadd45α signalling and induction of cell cycle arrest at the G2-M-checkpoint. This was accompanied by FOXO3-induced DNA damage repair as evidenced by lower DNA breaks over time in a comet assay in FOXO3 cell clones compared with control cells. In conclusion, FOXO3 is a pivotal relay in the coordination of the cellular response to genotoxic stress in the thyroid. Depending on the stimulus, FOXO3 induces either cell cycle arrest or apoptosis. Conversely, FOXO3 inactivation in thyroid cancers is consistent with genomic instability and loss of cell cycle control.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 808-808
Author(s):  
Mrinal Y. Shah ◽  
Eva Martinez ◽  
Relja Popovic ◽  
Teresa Ezponda ◽  
Eliza C. Small ◽  
...  

Abstract MMSET/WHSC1 is a histone methyltransferase (HMT) overexpressed in t(4;14)+ multiple myeloma (MM) patients, and is believed to be the driving factor in the pathogenesis of this subtype of MM. Overexpression of MMSET also occurs in solid cancers, including neuroblastoma, colon and prostate. MMSET overexpression in MM and prostate cells leads to an increase in histone 3 lysine 36 dimethylation (H3K36me2), and a decrease in histone 3 lysine 27 trimethylation (H3K27me3). This altered epigenetic landscape is accompanied by changes in proliferation, gene expression, and chromatin accessibility. Prior work linked methylation of histones, including H3K36, to the ability of cells to undergo DNA damage repair. In addition, t(4;14)+ patients frequently relapse after regimens that include DNA damage-inducing agents, suggesting that MMSET might play a role in DNA damage repair and response. To investigate the role of MMSET in DNA damage repair, we transfected U2OS cells with a linearized vector expressing a neomycin-resistant gene. In the presence of G418, only cells that are able to integrate this plasmid through non-homologous end joining (NHEJ) can survive. siRNA knockdown of MMSET led to a decrease in cell survival, suggesting that MMSET is necessary for efficient DNA repair. We also used U2OS cells engineered to express the AsiSI enzyme fused to an estrogen receptor hormone-binding domain. Upon tamoxifen treatment, double strand breaks (DSBs) are induced at multiple AsiSI recognition sites, accompanied by an increase in γH2AX foci. The extent of repair after AsiSI-induced damage was ascertained by the ability of a DNA fragment that spans a specific cut site to be PCR amplified. With MMSET knockdown, there was a >10 fold increase in unrepaired DNA. ChIP analysis showed that with the depletion of MMSET, γH2AX persisted at the cut site. ChIP for specific effectors of DNA damage showed a marked decrease of recruitment of CtIP and RAD51 to the DSB. However, immunoblot analysis showed that CtIP and RAD51 levels were drastically decreased with MMSET depletion, thus explaining the loss of their recruitment to DSBs. In contrast, XRCC4 levels were maintained with MMSET siRNA, but its recruitment to the DSB decreased. CtIP is important for both NHEJ and homologous recombination (HR), RAD51 is critical for HR, and XRCC4 is necessary for NHEJ, suggesting that MMSET is important in multiple pathways of DNA repair. To study the effect of MMSET in MM, we used the t(4;14)+ KMS11 cell line, NTKO, and genetically matched TKO cells in which the overexpressed MMSET allele was knocked out. NTKO cells have elevated levels of DNA damage at baseline, as measured by a comet assay and by the presence of elevated numbers of 53BP1-positive foci. Upon addition of the DNA damaging agent melphalan, NTKO cells showed increased damage as measured by an increase in the tail moment by the comet assay. Paradoxically, upon treatment of these cells with the DNA damaging agents, NTKO cells survived better than TKO cells. NTKO repaired DNA damage at an enhanced rate and continued to proliferate after a significant DNA damage insult, whereas TKO cells accumulated DNA damage and entered cell cycle arrest. We repleted TKO cells with constructs expressing either wild-type MMSET or an HMT-dead (Y1118A) isoform. Upon treatment, cells expressing the wild-type MMSET have showed enhanced DNA repair and continued proliferation after DNA damage, whereas cells expressing the HMT-dead protein repaired DNA damage more slowly and entered cell cycle arrest. The HMT activity of MMSET was critical for the induction of expression of genes required for multiple DNA repair pathways including CHEK2, DDB2, DDIT3, RAD51, and MRE11, again suggesting that MMSET modulates DNA repair by affecting expression of critical components of the repair machinery. The clinical relevance of these finds becomes more apparent in vivo. Luciferase-tagged KMS11 cells harboring doxycycline-inducible MMSET shRNA were injected into nude mice. After one week, mice were treated with doxycycline and injected with melphalan or saline. Knockdown of MMSET or melphalan treatment alone decreased tumor growth but eventually all mice had progressive disease. Only when MMSET was knocked down and chemotherapy given were the mice rendered tumor free. These findings indicate a new mechanism for the ability of MMSET to enhance DNA repair and identify the protein as a potential therapeutic target in MM and other cancers. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 91 (3) ◽  
pp. 444-452 ◽  
Author(s):  
Aditya Sunkaria ◽  
Willayat Yousuf Wani ◽  
Deep Raj Sharma ◽  
Kiran Dip Gill

2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


Sign in / Sign up

Export Citation Format

Share Document