Faculty Opinions recommendation of Asparaginase inhibits the lectin pathway of complement activation.

Author(s):  
Berhane Ghebrehiwet
Author(s):  
Ting Gao ◽  
Mingdong Hu ◽  
Xiaopeng Zhang ◽  
Hongzhen Li ◽  
Lin Zhu ◽  
...  

AbstractAn excessive immune response contributes to SARS-CoV, MERS-CoV and SARS-CoV-2 pathogenesis and lethality, but the mechanism remains unclear. In this study, the N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 were found to bind to MASP-2, the key serine protease in the lectin pathway of complement activation, resulting in aberrant complement activation and aggravated inflammatory lung injury. Either blocking the N protein:MASP-2 interaction or suppressing complement activation can significantly alleviate N protein-induced complement hyper-activation and lung injury in vitro and in vivo. Complement hyper-activation was also observed in COVID-19 patients, and a promising suppressive effect was observed when the deteriorating patients were treated with anti-C5a monoclonal antibody. Complement suppression may represent a common therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.One Sentence SummaryThe lectin pathway of complement activation is a promising target for the treatment of highly pathogenic coronavirus induced pneumonia.


Blood ◽  
2021 ◽  
Author(s):  
Eleni Gavriilaki ◽  
Régis Peffault de Latour ◽  
Antonio Maria Risitano

Complement is an elaborate system of the innate immunity. Genetic variants and autoantibodies leading to excessive complement activation are implicated in a variety of human diseases. Among them, the hematologic disease paroxysmal nocturnal hemoglobinuria (PNH) remains the prototype model of complement activation and inhibition. Eculizumab, the first-in-class complement inhibitor, was approved for PNH in 2007. Addressing some of the unmet needs, a long-acting C5 inhibitor, ravulizumab, and a C3 inhibitor, pegcetacoplan have been also now approved with PNH. Novel agents, such as factor B and factor D inhibitors, are under study with very promising results. In this era of several approved targeted complement therapeutics, selection of the proper drug needs to be based on a personalized approach. Beyond PNH, complement inhibition has also shown efficacy and safety in cold agglutinin disease (CAD), primarily with the C1s inhibitor of the classical complement pathway, sutimlimab, but also with pegcetacoplan. Furthermore, C5 inhibition with eculizumab and ravulizumab, as well as inhibition of the lectin pathway with narsoplimab, are investigated in transplant-associated thrombotic microangiopathy (TA-TMA). With this revolution of next-generation complement therapeutics, additional hematologic entities, such as delayed hemolytic transfusion reaction (DHTR) or immune thrombocytopenia (ITP), might also benefit from complement inhibitors. Therefore, this review aims to describe state-of-the-art knowledge of targeting complement in hematologic diseases focusing on: a) complement biology for the clinician, b) complement activation and therapeutic inhibition in prototypical complement-mediated hematologic diseases, c) hematologic entities under investigation for complement inhibition, and d) other complement-related disorders of potential interest to hematologists.


2020 ◽  
Vol 10 (8) ◽  
Author(s):  
Thorkil Anker‐Møller ◽  
Anne‐Mette Hvas ◽  
Niels Sunde ◽  
Steffen Thiel ◽  
Anne Troldborg

2020 ◽  
Vol 120 (12) ◽  
pp. 1720-1724 ◽  
Author(s):  
Michael Hultström ◽  
Robert Frithiof ◽  
Oskar Eriksson ◽  
Barbro Persson ◽  
Miklos Lipcsey ◽  
...  

AbstractThe ongoing COVID-19 pandemic has caused significant morbidity and mortality worldwide, as well as profound effects on society. COVID-19 patients have an increased risk of thromboembolic (TE) complications, which develop despite pharmacological thromboprophylaxis. The mechanism behind COVID-19-associated coagulopathy remains unclear. Mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation, has been suggested as a potential amplifier of blood coagulation during thromboinflammation. Here we describe data from a cohort of critically ill COVID-19 patients (n = 65) treated at a tertiary hospital center intensive care unit (ICU). A subset of patients had strongly elevated MBL plasma levels, and activity upon ICU admission, and patients who developed symptomatic TE (14%) had significantly higher MBL levels than patients without TE. MBL was strongly correlated to plasma D-dimer levels, a marker of COVID-19 coagulopathy, but showed no relationship to degree of inflammation or other organ dysfunction. In conclusion, we have identified complement activation through the MBL pathway as a novel amplification mechanism that contributes to pathological thrombosis in critically ill COVID-19 patients. Pharmacological targeting of the MBL pathway could be a novel treatment option for thrombosis in COVID-19. Laboratory testing of MBL levels could be of value for identifying COVID-19 patients at risk for TE events.


2007 ◽  
Vol 44 (1-3) ◽  
pp. 257-258
Author(s):  
Allyson Wood ◽  
Nirmal K. Banda ◽  
Kazue Takahashi ◽  
Alan B. Ezekowitz ◽  
William P. Arend ◽  
...  

2018 ◽  
Vol 45 (8) ◽  
pp. 1136-1144 ◽  
Author(s):  
Anne Troldborg ◽  
Steffen Thiel ◽  
Marten Trendelenburg ◽  
Justa Friebus-Kardash ◽  
Josephine Nehring ◽  
...  

Objective.The pathogenesis of systemic lupus erythematosus (SLE) involves complement activation. Activation of complement through the classical pathway (CP) is well established. However, complement activation through pattern recognition not only happens through the CP, but also through the lectin pathway (LP). We investigated the hypothesis that the LP is activated in SLE and involved in the pathogenesis of the disease.Methods.Using immunoassays developed in-house, we measured concentrations of LP proteins in a cohort of 372 patients with SLE and 170 controls. We estimated complement activation measuring total C3, and investigated whether LP protein concentrations were associated with complement activation and disease activity. Protein changes and disease activity over time were assessed in a cohort of 52 patients with SLE followed with repeated samples over a 5-year period.Results.Concentrations of LP proteins in SLE were altered compared with controls. The differences observed in LP proteins associated with complement activation were reflected by a decrease in total C3. The pattern recognition molecules (M-ficolin, CL-L1, and CL-K1), the serine protease (MASP-3), and the associated protein (MAp19) displayed a negative correlation with disease activity. Changes in MASP-2 concentrations over time correlated significantly with increased disease activity. Association between active proteinuria and serum concentration was observed for MASP-3 and MAp19.Conclusion.In patients with SLE, we measured specific changes in LP proteins that are associated with complement activation and disease activity, indicating that the LP is activated in patients with SLE. These novel findings substantiate the involvement of the LP in SLE.


Structure ◽  
2015 ◽  
Vol 23 (2) ◽  
pp. 342-351 ◽  
Author(s):  
Troels R. Kjaer ◽  
Le T.M. Le ◽  
Jan Skov Pedersen ◽  
Bjoern Sander ◽  
Monika M. Golas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document