scholarly journals Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation

Author(s):  
Ting Gao ◽  
Mingdong Hu ◽  
Xiaopeng Zhang ◽  
Hongzhen Li ◽  
Lin Zhu ◽  
...  

AbstractAn excessive immune response contributes to SARS-CoV, MERS-CoV and SARS-CoV-2 pathogenesis and lethality, but the mechanism remains unclear. In this study, the N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 were found to bind to MASP-2, the key serine protease in the lectin pathway of complement activation, resulting in aberrant complement activation and aggravated inflammatory lung injury. Either blocking the N protein:MASP-2 interaction or suppressing complement activation can significantly alleviate N protein-induced complement hyper-activation and lung injury in vitro and in vivo. Complement hyper-activation was also observed in COVID-19 patients, and a promising suppressive effect was observed when the deteriorating patients were treated with anti-C5a monoclonal antibody. Complement suppression may represent a common therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.One Sentence SummaryThe lectin pathway of complement activation is a promising target for the treatment of highly pathogenic coronavirus induced pneumonia.

1988 ◽  
Vol 254 (2) ◽  
pp. H258-H264
Author(s):  
L. H. Bruner ◽  
K. J. Johnson ◽  
G. O. Till ◽  
R. A. Roth

Monocrotaline pyrrole (MCTP) causes pulmonary vascular injury, pulmonary hypertension, and right ventricular hypertrophy in rats. The mechanisms by which MCTP causes lung injury are not known. After treatment with a moderate dose of MCTP, several days pass before major lung injury is detected, thus suggesting that the damage is caused indirectly. Since activation of the complement system can cause lung injury, it was of interest to test whether complement activation may be important in lung injury due to MCTP. Accordingly, rats were given a single dose of MCTP (3.5 mg/kg iv), and serum hemolytic complement activity was measured at several times after rats were treated. Neutrophil aggregometry also was used to determine whether complement activation products could be detected in serum after MCTP was given in vivo. The effect of complement depletion on MCTP-induced pulmonary injury was tested by cotreating rats with purified cobra venom factor and MCTP. MCTP treatment did not cause detectable complement activation in vivo, and complement depletion did not protect rats from lung injury. The direct effect of MCTP on serum complement also was tested by exposing fresh rat serum to MCTP in vitro and measuring serum complement activity. MCTP decreased serum hemolytic complement activity in vitro, but it did not interfere with subsequent zymosan-induced activation of complement. These results suggest that complement does not play a role in the development of major lung injury that occurs several days after treatment of rats with MCTP.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 354-354
Author(s):  
Saskia van der Velden ◽  
Thijs L.J. van Osch ◽  
Amina Seghier ◽  
Arthur Bentlage ◽  
Juk Yee Mok ◽  
...  

Abstract Transfusion-related acute lung injury (TRALI) is a leading cause of blood transfusion-related fatalities without available therapies. The pulmonary endothelium is damaged in TRALI, through incompletely understood pathogenic mechanisms, resulting in pulmonary edema. Generally, anti-leukocyte antibodies or biological response modifiers in the transfusion product, in combination with predisposing risk factors in the transfused recipient (e.g. inflammation), are responsible for initiation of TRALI. Remarkably, not all anti-leukocyte antibodies cause TRALI. In a previous in vitro study, we identified increased Fc-mediated complement activation to be a key feature of murine TRALI-inducing antibody 34-1-2S (anti-H-2K d) compared to TRALI-resistant antibody SF1.1.10 (anti-H-2K d) (Zeeuw van der Laan et al, Blood Adv 2020). In the current study, we further explored antibody-mediated TRALI mechanisms in vivo using our previously established TRALI mouse model in which mice are pre-depleted of protective CD4+ T cells and primed with LPS, followed by infusion of antibody 34-1-2S (Kapur et al, Blood 2017, Blood Adv 2018, Blood 2019). A key read-out for TRALI was the lung wet/dry weight ratio (Lung W/D, measure for pulmonary edema). We found that in vitro antibody-mediated complement activation was associated with in vivo antibody-mediated TRALI. 34-1-2S caused severe TRALI (complement activation: +++, Lung W/D: 7.4 ± 0.21), while SF1.1.10 did not cause TRALI (complement activation: +, Lung W/D: 4.68 ± 0.16). Furthermore, Fc-deglycosylated 34-1-2S still caused significant TRALI (complement activation: ++, in vivo Lung W/D: 5.16 ± 0.52). TRALI development was fully Fc-dependent as 34-1-2S-Fab did not cause any TRALI (no complement activation, Lung W/D: 4.35 ± 0.18). Importantly, we found significantly increased levels of complement C1q-C4 complexes in plasma samples of TRALI patients (n=46) compared to healthy controls (n=25): 6.49 ± 5.27 vs 3.84 ± 2.27 AU/ml, respectively, P: 0.0005,***. Similarly, C5a levels were significantly elevated in plasma samples of TRALI patients (n=53) compared to healthy controls (n=30): 2.52 ± 2.17 vs 1.37 ± 1.08 ng/ml, respectively, P: 0.0006,***. To further dissect the effect of the Fc-part of 34-1-2S in TRALI-induction, we aim to investigate the contribution of Fc-mediated complement activation vs Fc-receptor interaction. We therefore successfully generated chimeric variants of 34-1-2S with a humanized IgG1 Fc-domain containing mutations making them functionally complement dead (K322A), Fc-receptor dead (dG236) or both complement and Fc-receptor dead (PG LALA). We are currently investigating the effects of these variants on in vivo TRALI induction. We next investigated how the in vivo murine TRALI reaction was related to numbers of macrophages, monocytes and neutrophils in blood and lungs. We found that 34-1-2S-TRALI was associated with significantly decreased levels of macrophages in the lungs and increased levels in blood, compared to mice infused with PBS, SF1.1.10 or 34-1-2S-Fab, suggesting that Fc-mediated complement activation and TRALI induction is related to macrophage trafficking from lungs to blood. We did not observe any significant differences between blood and lung neutrophil levels of 34-1-2S-TRALI mice compared to SF1.1.10 TRALI-resistant mice. We hypothesized that in TRALI neutrophils undergo formation of neutrophil extracellular traps (NETs) induced by complement. We observed that C5a enabled potent neutrophil-chemotaxis in vitro (P: 0.0048,**). In addition, using direct immunofluorescence staining of extracellular DNA and Citrullinated histone H3, we observed that both LPS and C5a on their own could induce NET formation in vitro, which was synergistically increased with a combination of both LPS and C5a (P: 0.0417,*), as occurring during TRALI. Furthermore, we found increased levels of NETs to be present in plasma samples of TRALI patients (n=53) compared to healthy controls (n=30): 1.64 ± 0.97 vs 0.80 ± 0.34 MPO-DNA OD, respectively, P: 0.0002,***. Finally, we targeted the C5a-receptor (C5aR) using a C5aR-antagonist in our TRALI mouse model. Surprisingly, this did not prevent but even worsened TRALI (P: 0.0398,*), with elevated levels of blood monocytes and macrophages. This suggests that an approach directly targeting complement components may be a more promising therapeutic strategy to explore in combatting TRALI. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yumei Bai ◽  
Yanghua Li ◽  
Juan Bai ◽  
Yumei Zhang

Abstract Background The occurrence of chemoresistance is a common problem in tumor treatment. Circular RNA (circRNA) has been confirmed to be related to tumor chemoresistance. However, the role and the underlying molecular mechanism of hsa_circ_0004674 in the chemoresistance of osteosarcoma (OS) are still unclear. Methods The expression of hsa_circ_0004674, miR-342-3p, and fibrillin-1 (FBN1) was determined by qRT-PCR. Cell counting kit 8 assay was used to evaluate the doxorubicin (DXR) resistance of cells. The proliferation and apoptosis of cells were measured using colony formation assay and flow cytometry. Western blot analysis was utilized to examine the protein levels of resistance markers, Wnt/β-catenin pathway markers and FBN1. The interaction between miR-342-3p and hsa_circ_0004674 or FBN1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Moreover, animal experiments were performed to assess the effect of hsa_circ_0004674 silencing on the DXR sensitive of OS in vivo. Results The upregulated hsa_circ_0004674 was found in DXR-resistant OS tissues and cells. Knockdown of hsa_circ_0004674 could inhibit the DXR resistance of OS cells in vitro and promote the DXR sensitive of OS tumors in vivo. In addition, we discovered that hsa_circ_0004674 could sponge miR-342-3p, and miR-342-3p could target FBN1. MiR-342-3p inhibitor could reverse the inhibition effect of hsa_circ_0004674 knockdown on the DXR resistance of OS cells. Similarly, the suppressive effect of miR-342-3p on the DXR resistance of OS cells also could be reversed by FBN1 overexpression. Furthermore, we revealed that hsa_circ_0004674 silencing inhibited the activity of Wnt/β-catenin pathway by the miR-342-3p/FBN1 axis. Conclusion Hsa_circ_0004674 facilitated the DXR resistance of OS through Wnt/β-catenin pathway via regulating the miR-342-3p/FBN1 axis, suggesting that hsa_circ_0004674 was a promising target for the chemoresistance of OS.


2020 ◽  
Vol 4 (9) ◽  
pp. 2049-2057 ◽  
Author(s):  
Kimberly Lin ◽  
Lingjun Zhang ◽  
Michael Kong ◽  
Maojing Yang ◽  
Yinghua Chen ◽  
...  

Abstract Membrane attack complexes (MACs; C5b-9) assembled after complement activation can directly injure self-tissues, leading to various diseases. Eculizumab, a monoclonal antibody (mAb) against complement component C5, is being used in the clinic to treat diseases in which MAC-mediated tissue damage is a primary cause. However, C5 is not a selective target for MAC assembly inhibition, and some patients respond incompletely or not at all to the eculizumab treatment. Therefore, C6, the next essential component in the terminal pathway of complement activation, may be an alternative target for the selective inhibition of MAC formation. Surprisingly, few reports describe a functional blockade of C6 using a specific mAb. Here, we report the development of an anti-human C6 mAb (clone 1C9) that recognizes C6 both in free circulation and within C5b6 complexes. This mAb blocked C7 binding to C5b6 complexes and consequently inhibited MAC formation and protected affected paroxysmal nocturnal hemoglobinuria patient red blood cells from MAC-mediated damage in vitro. In addition, this mAb cross-reacts with rhesus monkey but not mouse complement C6. Finally, 1C9 significantly reduced human complement–mediated intravascular hemolysis in vivo in a mouse model. These results suggest that the anti-C6 mAb holds promise as a new therapeutic agent that selectively targets MAC for many complement-mediated pathological conditions.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Ben M. Flude ◽  
Giulio Nannetti ◽  
Paige Mitchell ◽  
Nina Compton ◽  
Chloe Richards ◽  
...  

MASP-2, mannose-binding protein-associated serine protease 2, is a key enzyme in the lectin pathway of complement activation. Hyperactivation of this protein by human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 has been found to contribute to aberrant complement activation in patients, leading to aggravated lung injury with potentially fatal consequences. This hyperactivation is triggered in the lungs through a conserved, direct interaction between MASP-2 and coronavirus nucleocapsid (N) proteins. Blocking this interaction with monoclonal antibodies and interfering directly with the catalytic activity of MASP-2, have been found to alleviate coronavirus-induced lung injury both in vitro and in vivo. In this study, a virtual library of 8736 licensed drugs and clinical agents has been screened in silico according to two parallel strategies. The first strategy aims at identifying direct inhibitors of MASP-2 catalytic activity, while the second strategy focusses on finding protein-protein interaction inhibitors (PPIs) of MASP-2 and coronaviral N proteins. Such agents could represent promising support treatment options to prevent lung injury and reduce mortality rates of infections caused by both present and future-emerging coronaviruses. Forty-six drug repurposing candidates were purchased and, for the ones selected as potential direct inhibitors of MASP-2, a preliminary in vitro assay was conducted to assess their interference with the lectin pathway of complement activation. Some of the tested agents displayed a dose-response inhibitory activity of the lectin pathway, potentially providing the basis for a viable support strategy to prevent the severe complications of coronavirus infections.


1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Sign in / Sign up

Export Citation Format

Share Document