scholarly journals Faculty Opinions recommendation of Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity.

Author(s):  
Jennifer Gommerman
2019 ◽  
Vol 20 (4) ◽  
pp. 407-419 ◽  
Author(s):  
Rejane Rua ◽  
Jane Y. Lee ◽  
Alexander B. Silva ◽  
Isabella S. Swafford ◽  
Dragan Maric ◽  
...  

Gut ◽  
2020 ◽  
pp. gutjnl-2020-321731
Author(s):  
Dominik Aschenbrenner ◽  
Maria Quaranta ◽  
Soumya Banerjee ◽  
Nicholas Ilott ◽  
Joanneke Jansen ◽  
...  

ObjectiveDysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine.DesignWe performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples.ResultsWe characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1β and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease.ConclusionOur work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn’s disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1β-targeting therapies upstream of IL-23.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lori N. Eidson ◽  
Qingzeng Gao ◽  
Hongyan Qu ◽  
Daniel S. Kikuchi ◽  
Ana Carolina P. Campos ◽  
...  

AbstractStroke is a multiphasic process involving a direct ischemic brain injury which is then exacerbated by the influx of immune cells into the brain tissue. Activation of brain endothelial cells leads to the expression of adhesion molecules such vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells, further increasing leukocyte recruitment. Polymerase δ-interacting protein 2 (Poldip2) promotes brain vascular inflammation and leukocyte recruitment via unknown mechanisms. This study aimed to define the role of Poldip2 in mediating vascular inflammation and leukocyte recruitment following cerebral ischemia. Cerebral ischemia was induced in Poldip2+/+ and Poldip2+/− mice and brains were isolated and processed for flow cytometry or RT-PCR. Cultured rat brain microvascular endothelial cells were used to investigate the effect of Poldip2 depletion on focal adhesion kinase (FAK)-mediated VCAM-1 induction. Poldip2 depletion in vivo attenuated the infiltration of myeloid cells, inflammatory monocytes/macrophages and decreased the induction of adhesion molecules. Focusing on VCAM-1, we demonstrated mechanistically that FAK activation was a critical intermediary in Poldip2-mediated VCAM-1 induction. In conclusion, Poldip2 is an important mediator of endothelial dysfunction and leukocyte recruitment. Thus, Poldip2 could be a therapeutic target to improve morbidity following ischemic stroke.


Nature Aging ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 101-113
Author(s):  
Emma S. Chambers ◽  
Milica Vukmanovic-Stejic ◽  
Barbara B. Shih ◽  
Hugh Trahair ◽  
Priya Subramanian ◽  
...  

2021 ◽  
pp. 1-17
Author(s):  
Cong Phi Dang ◽  
Jiraphorn Issara-Amphorn ◽  
Awirut Charoensappakit ◽  
Kanyarat Udompornpitak ◽  
Thansita Bhunyakarnjanarat ◽  
...  

Controlof immune responses through the immunometabolism interference is interesting for sepsis treatment. Then, expression of immunometabolism-associated genes and BAM15, a mitochondrial uncoupling agent, was explored in a proinflammatory model using lipopolysaccharide (LPS) injection. Accordingly, the decreased expression of mitochondrial uncoupling proteins was demonstrated by transcriptomic analysis on metabolism-associated genes in macrophages (RAW246.7) and by polymerase chain reaction in LPS-stimulated RAW246.7 and hepatocytes (Hepa 1–6). Pretreatment with BAM15 at 24 h prior to LPS in macrophages attenuated supernatant inflammatory cytokines (IL-6, TNF-α, and IL-10), downregulated genes of proinflammatory M1 polarization (iNOS and IL-1β), upregulated anti-inflammatory M2 polarization (Arg1 and FIZZ), and decreased cell energy status (extracellular flux analysis and ATP production). Likewise, BAM15 decreased expression of proinflammatory genes (IL-6, TNF-α, IL-10, and iNOS) and reduced cell energy in hepatocytes. In LPS-administered mice, BAM15 attenuated serum cytokines, organ injury (liver enzymes and serum creatinine), and tissue cytokines (livers and kidneys), in part, through the enhanced phosphorylated αAMPK, a sensor of ATP depletion with anti-inflammatory property, in the liver, and reduced inflammatory monocytes/macrophages (Ly6C +ve, CD11b +ve) in the liver as detected by Western blot and flow cytometry, respectively. In conclusion, a proof of concept for inflammation attenuation of BAM15 through metabolic interference-induced anti-inflammation on macrophages and hepatocytes was demonstrated as a new strategy of anti-inflammation in sepsis.


Sign in / Sign up

Export Citation Format

Share Document