cytokine network
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 87)

H-INDEX

62
(FIVE YEARS 6)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
John H. White

Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.


2022 ◽  
Vol 16 ◽  
Author(s):  
Mohammed Ali Bakkari ◽  
Sivakumar Sivagurunathan Moni ◽  
Muhammad Hadi Sultan ◽  
Osama A. Madkhali

Abstract: The world continues to be in the midst of a distressing pandemic of coronavirus disease 2019 (COVID-19) infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel virus with multiple antigenic systems. The virus enters via nasopharynx, oral and infects cells by the expression of the spike protein, and enters the lungs using the angiotensin-converting enzyme-2 receptor. The spectrum of specific immune responses to SARS-CoV-2 virus infection is increasingly challenging as frequent mutations have been reported and their antigen specificity varies accordingly. The development of monoclonal antibodies (mAbs) will have a more significant advantage in suppressing SARS-CoV-2 virus infectivity. Recently, mAbs have been developed to target specific neutralizing antibodies against SARS-CoV-2 infection. The use of the therapeutic index of mAbs that can elicit neutralization by binding to the viral spike protein and suppress the cytokine network is a classic therapeutic approach for a potential cure. The development of mAbs against B-cell function as well as inhibition of the cytokine network has also been a focus in recent research. Recent studies have demonstrated the efficacy of mAbs as antibody cocktail preparations against SARS-CoV-2 infection. Target specific therapeutic accomplishment with mAbs, a milestone in the modern therapeutic age, can be used to achieve a specific therapeutic strategy to suppress SARS-CoV-2 virus infection. This review focuses on the molecular aspects of the cytokine network and antibody formation to better understand the development of mAbs against SARS-CoV-2 infection.


2021 ◽  
Vol 17 (7) ◽  
pp. 534-551
Author(s):  
K.P. Zak ◽  
V.V. Popova ◽  
V.L. Orlenko ◽  
O.V. Furmanova ◽  
N.D. Tronko

The paper analyzes the current literature data and the results of our own researches concerning the state of the cytokine network: pro- and anti-inflammatory cytokines (interleukin (IL) 1α, IL-1β, IL-4, IL-6, IL-10, IL-17 and tumor necrosis factor (TNF) α), α- and β-chemokines, including IL-8 and IL-16, as well as adipokines (leptin and adiponectin) in the peripheral blood of patients with type 2 diabetes (T2D) with normal and increased body weight/obesity. It has been shown that patients with T2D are cha­racterized by an increased content of proinflammatory cytokines (IL-1, IL-6, IL-17, TNFα), α- and β-chemokines in the peripheral blood, including IL-8 and IL-16, as well as leptin with a decrease in adiponectin content. In lean patients (with body mass index (BMI) < 25.5 kg/m2) compared to lean normoglycemic individuals from the control group (BMI < 25.5 kg/m2), there is a small but significant increase in IL-1β, IL-6, IL-17, TNFα and leptin, which, as BMI increases, significantly increases in severe obesity (BMI > 30.0 kg/m2), especially in obese women (BMI > 35.0 kg/m2). Similarly, an increase in proinflammatory cytokines is observed in normoglycemic people, but not as signifi­cant as in T2D. Less clear data were obtained when during determination of the anti-inflammatory cytokines IL-4 and IL-10, which is explained by a significant polymorphism of their genes, and both protective and compensatory effects on pro-inflammatory cytokine rise. In T2D patients, especially those with obesity, there is an increase in the leptin level and a decrease in the adiponectin content. The severity of the course and the percentage of mortality are closely associated with the BMI of patients. The effectiveness of the fight against an increase in the incidence of T2D should be primarily aimed at preventing obesity, and in case of already developed T2D — at reducing concomitant obesity. The analysis of the data presented also suggests that a sharp increase in the content of pro-inflammatory cytokines (so called cytokine storm) observed in patients with T2D and obesity infected with COVID-19, is a consequence of the summation and potentiation of already existing inflammatory process.


AIDS ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Stephen A. Rawlings ◽  
Felix Torres ◽  
Alan Wells ◽  
Andrea Lisco ◽  
Wendy Fitzgerald ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Livia Silva Araújo Passos ◽  
Carolina Cattoni Koh ◽  
Luísa Mourão Dias Magalhães ◽  
Maria do Carmo Pereira Nunes ◽  
Kenneth John Gollob ◽  
...  

CD4−CD8− (double-negative, DN) T cells are critical orchestrators of the cytokine network associated with the pathogenic inflammatory response in one of the deadliest cardiomyopathies known, Chagas heart disease, which is caused by Trypanosoma cruzi infection. Here, studying the distribution, activation status, and cytokine expression of memory DN T-cell subpopulations in Chagas disease patients without cardiac involvement (indeterminate form—IND) or with Chagas cardiomyopathy (CARD), we report that while IND patients displayed a higher frequency of central memory, CARD had a high frequency of effector memory DN T cells. In addition, central memory DN T cells from IND displayed a balanced cytokine profile, characterized by the concomitant expression of IFN-γ and IL-10, which was not observed in effector memory DN T cells from CARD. Supporting potential clinical relevance, we found that the frequency of central memory DN T cells was associated with indicators of better ventricular function, while the frequency of effector memory DN T cells was not. Importantly, decreasing CD1d-mediated activation of DN T cells led to an increase in IL-10 expression by effector memory DN T cells from CARD, restoring a balanced profile similar to that observed in the protective central memory DN T cells. Targeting the activation of effector memory DN T cells may emerge as a strategy to control inflammation in Chagas cardiomyopathy and potentially in other inflammatory diseases where these cells play a key role.


2021 ◽  
pp. 212-223
Author(s):  
S. Yu. Tereshchenko ◽  
M. A. Malinchik ◽  
M. V. Smolnikova

Chronic respiratory diseases are among the most common non- infection diseases. In particular, it is bronchial asthma (BA), characterized by bronchial hyperreactivity and varying degrees of airway obstruction that is the cause of morbidity and mortality. The methods available for the information about the presence of inflammation in the airways, such as bronchoscopy and bronchial biopsy to be obtained have currently been invasive and difficult in everyday clinical practice, especially for children and seriously ill patients. In this regard, recently there has been an increase in the development of non-invasive methods for diagnosing the respiratory system, being comfortable and painless for trial subjects, especially children, also providing the inflammatory process control in the lungs, the severity assessment and monitoring the treatment process. The exhaled breath condensate (EBC) is of great attention, which is a source of various biomolecules, including nitric oxide (NO), leukotrienes, 8-isoprostane, prostaglandins, etc., being locally or systemically associated with disease processes in the body. Of particular interest is the presence of cytokines in EBC, namely the specific proteins produced by various cells of the body that play a key role in inflammatory processes in AD and provide cell communication (cytokine network). Thereby, it becomes possible for the severity and control level of childhood bronchial asthma using only the EBC analysis to be assessed. In addition, the non-invasiveness of this method allows it to be reused for monitoring lung diseases of even the smallest patients, including infants. Thus, the field of metabolite analysis in EBC has been developing and, in the near future, the given method is likely to be the most common for diagnosing the respiratory system diseases in both children and adults.


2021 ◽  
Vol 8 ◽  
Author(s):  
Miroslav Harjacek

Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial–entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.


2021 ◽  
pp. 16-30
Author(s):  
S.P. Alpatov

Serious sports achievements are associated with extreme impacts on the human body: psycho-emotional and physical loads of the training period, competitions requiring the mobilization of all the adaptive reserves of the body, changes in climatic conditions when athletes move long distances, adverse environmental factors leading to hypothermia. The combination of these factors has a depressing effect on the immune system. The emergence of immune disorders in athletes during periods of extreme physical and psycho-emotional stress made it possible to identify the mechanisms of adaptation failure and depletion of immunity reserves, which requires corrective measures. Roncoleukin® is a complete structural and functional analogue of endogenous interleukin-2 (IL-2) and has the same spectrum of functional activity. It is able to compensate for the deficiency of IL-2 and reproduce its effects as one of the key components of the cytokine network.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vasiliki Matzaraki ◽  
Kieu T. T. Le ◽  
Martin Jaeger ◽  
Raúl Aguirre-Gamboa ◽  
Melissa D. Johnson ◽  
...  

Circulatory inflammatory proteins play a significant role in anti-Candida host immune defence. However, little is known about the genetic variation that contributes to the variability of inflammatory responses in response to C. albicans. To systematically characterize inflammatory responses in Candida infection, we profiled 91 circulatory inflammatory proteins in peripheral blood mononuclear cells (PBMCs) stimulated with C. albicans yeast isolated from 378 individuals of European origin from the 500 Functional Genomics (500FG) cohort of the Human Functional Genomics Project (HFGP) and Lifelines Deep cohort. To identify the genetic factors that determine variation in inflammatory protein responses, we correlated genome-wide single nucleotide polymorphism (SNP) genotypes with protein abundance (protein quantitative trait loci, pQTLs) produced by the Candida-stimulated PBMCs. Furthermore, we investigated whether differences in survival of candidaemia patients can be explained by modulating levels of inflammatory proteins. We identified five genome-wide significant pQTLs that modulate IL-8, MCP-2, MMP-1, and CCL3 in response to C. albicans. In addition, our genetic analysis suggested that GADD45G from rs10114707 locus that reached genome-wide significance could be a potential core gene that regulates a cytokine network upon Candida infection. Last but not least, we observed that a trans-pQTL marked from SNP rs7651677 at chromosome 3 that influences urokinase plasminogen activator (uPA) is strongly associated with patient survival (Psurvival = 3.52 x 10-5, OR 3). Overall, our genetic analysis showed that genetic variation determines the abundance of circulatory proteins in response to Candida infection.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 846
Author(s):  
David Kluwig ◽  
Sebastian Huth ◽  
Ali T. Abdallah ◽  
Carolina M. Pfaff ◽  
Katharina Fietkau ◽  
...  

Psoriasis is a chronic skin disease affecting 2–3% of the global population. The proinflammatory IL-17A is a key cytokine in psoriasis. Accumulating evidence has revealed that IL-36γ plays also a pathogenic role. To understand more precisely the role of the IL-17A–IL-36γ cytokine network in skin pathology, we used an ear injection model. We injected IL-17A or IL-36γ alone and in combination into the ear pinnae of mice. This resulted in a significant increase in ear thickness measured over time. Histological evaluation of IL-17A + IL-36γ-treated skin showed a strong acanthosis, hyperparakeratosis and infiltration of neutrophils. The same histological features were found in mice after injection of IL-36γ alone, but to a lesser extent. IL-17A alone was not able to induce psoriasis-like changes. Genes encoding proteins of the S100 family, antimicrobial peptides and chemo-attractants for neutrophils were upregulated in the IL-17A + IL-36γ group. A much weaker expression was seen after the injection of each cytokine alone. These results strengthen the hypothesis that IL-17A and IL-36γ drive psoriatic inflammation via a synergistic interaction. Our established intradermal ear injection model can be utilized in the future to monitor effects of various inhibitors of this cytokine network.


Sign in / Sign up

Export Citation Format

Share Document