Faculty Opinions recommendation of MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation.

Author(s):  
Daniel Reines
2009 ◽  
Vol 425 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Sabine Wenzel ◽  
Berta M. Martins ◽  
Paul Rösch ◽  
Birgitta M. Wöhrl

The eukaryotic transcription elongation factor DSIF [DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) sensitivity-inducing factor] is composed of two subunits, hSpt4 and hSpt5, which are homologous to the yeast factors Spt4 and Spt5. DSIF is involved in regulating the processivity of RNA polymerase II and plays an essential role in transcriptional activation of eukaryotes. At several eukaryotic promoters, DSIF, together with NELF (negative elongation factor), leads to promoter-proximal pausing of RNA polymerase II. In the present paper we describe the crystal structure of hSpt4 in complex with the dimerization region of hSpt5 (amino acids 176–273) at a resolution of 1.55 Å (1 Å=0.1 nm). The heterodimer shows high structural similarity to its homologue from Saccharomyces cerevisiae. Furthermore, hSpt5-NGN is structurally similar to the NTD (N-terminal domain) of the bacterial transcription factor NusG. A homologue for hSpt4 has not yet been found in bacteria. However, the archaeal transcription factor RpoE” appears to be distantly related. Although a comparison of the NusG-NTD of Escherichia coli with hSpt5 revealed a similarity of the three-dimensional structures, interaction of E. coli NusG-NTD with hSpt4 could not be observed by NMR titration experiments. A conserved glutamate residue, which was shown to be crucial for dimerization in yeast, is also involved in the human heterodimer, but is substituted for a glutamine residue in Escherichia coli NusG. However, exchanging the glutamine for glutamate proved not to be sufficient to induce hSpt4 binding.


Cell Reports ◽  
2018 ◽  
Vol 22 (4) ◽  
pp. 1031-1039 ◽  
Author(s):  
Mahmud K.K. Shivji ◽  
Xavier Renaudin ◽  
Çiğdem H. Williams ◽  
Ashok R. Venkitaraman

2000 ◽  
Vol 20 (4) ◽  
pp. 1263-1270 ◽  
Author(s):  
Akira Ishiguro ◽  
Yasuhisa Nogi ◽  
Koji Hisatake ◽  
Masami Muramatsu ◽  
Akira Ishihama

ABSTRACT The Rpb6 subunit of RNA polymerase II is one of the five subunits common to three forms of eukaryotic RNA polymerase. Deletion and truncation analyses of the rpb6 gene in the fission yeastSchizosaccharomyces pombe indicated that Rpb6, consisting of 142 amino acid residues, is an essential protein for cell viability, and the essential region is located in the C-terminal half between residues 61 and 139. After random mutagenesis, a total of 14 temperature-sensitive mutants were isolated, each carrying a single (or double in three cases and triple in one) mutation. Four mutants each carrying a single mutation in the essential region were sensitive to 6-azauracil (6AU), which inhibits transcription elongation by depleting the intracellular pool of GTP and UTP. Both 6AU sensitivity and temperature-sensitive phenotypes of these rpb6 mutants were suppressed by overexpression of TFIIS, a transcription elongation factor. In agreement with the genetic studies, the mutant RNA polymerases containing the mutant Rpb6 subunits showed reduced affinity for TFIIS, as measured by a pull-down assay of TFIIS-RNA polymerase II complexes using a fusion form of TFIIS with glutathioneS-transferase. Moreover, the direct interaction between TFIIS and RNA polymerase II was competed by the addition of Rpb6. Taken together, the results lead us to propose that Rpb6 plays a role in the interaction between RNA polymerase II and the transcription elongation factor TFIIS.


2002 ◽  
Vol 10 (5) ◽  
pp. 1139-1150 ◽  
Author(s):  
Bernhard Dichtl ◽  
Diana Blank ◽  
Martin Ohnacker ◽  
Arno Friedlein ◽  
Daniel Roeder ◽  
...  

2012 ◽  
Vol 23 (21) ◽  
pp. 4297-4312 ◽  
Author(s):  
Alicia García ◽  
Alejandro Collin ◽  
Olga Calvo

The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3′-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5–Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5–Rpb1 complex levels and consequently transcription elongation rate.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1734-1734 ◽  
Author(s):  
Christopher R. Vakoc ◽  
Sean A. Mandat ◽  
Ben A. Olenschock ◽  
Gerd A. Blobel

Abstract Epigenetic regulation of gene expression plays a fundamental role during tissue specification and cellular memory. Cells that are committed to a given lineage, for example during hematopoiesis, “remember” their phenotype throughout successive rounds of cell division, reflecting alterations in chromatin structure at genes that are permanently activated or silenced. Cellular memory is anchored in specific sets of histone modifications, which together form the basis for the histone code. This is illustrated in the methylation of histone molecules: while methylation of histone H3 on lysines 4, 36, and 79 is linked with gene activation, methylation of H3 on lysines 9 and 27 and histone H4 on lysine 20 is associated with transcriptionally silent heterochromatin and repressed genes within euchromatin. Not surprisingly, dysregulation of histone methylation contributes to human diseases such as leukemias. Here we examined the methylation of histone molecules during gene activation and repression triggered by the hematopoietic transcription factor GATA-1. Surprisingly, we found that during activation by GATA-1 in erythroid cells, the levels of H3K9 di- and tri-methylation increase dramatically at all examined GATA-1-stimulated genes, including alpha- and beta-globin, AHSP, Band 3 and Glycophorin A. In contrast, at all GATA-1-repressed genes examined (GATA-2, c-kit, and c-myc) these marks are rapidly lost. Peaks of H3K9 methylation were observed in the transcribed portion of genes with lower signals at the promoter regions. Heterochromatin Protein 1γ (HP1γ), a protein containing a chromo-domain that recognizes H3K9 methylation, is also present in the transcribed region of all active genes examined. We extended these analyses to include numerous genes in diverse cell types (primary erythroid cells, primary T-lymphoid cells, epithelial cells and fibroblast) and consistently found a tight correlation between H3K9 methylation and gene activity, highlighting the general nature of our findings. Both the presence of HP1γ and H3K9 methylation at active genes are dependent upon transcription elongation by RNA polymerase II. Finally, HP1γ is in a physical complex with the elongating form of RNA polymerase II. Together, our results show that H3K9 methylation and HP1γ not only function in repressive chromatin, but play a novel and unexpected role during transcription activation. These results further elucidate new combinations of histone modifications that distinguish between repressed and actively transcribing chromatin.


2001 ◽  
Vol 21 (24) ◽  
pp. 8651-8656 ◽  
Author(s):  
Sung-Keun Lee ◽  
Sung-Lim Yu ◽  
Louise Prakash ◽  
Satya Prakash

ABSTRACT Mutations in the human CSB gene cause Cockayne syndrome (CS). In addition to increased photosensitivity, CS patients suffer from severe developmental abnormalities, including growth retardation and mental retardation. Whereas a deficiency in the preferential repair of UV lesions from the transcribed strand accounts for the increased photosensitivity of CS patients, the reason for developmental defects in these individuals has remained unclear. Here we provide in vivo evidence for a role of RAD26, the counterpart of the CSB gene in Saccharomyces cerevisiae, in transcription elongation by RNA polymerase II, and in addition we show that under conditions requiring rapid synthesis of new mRNAs, growth is considerably reduced in cells lackingRAD26. These findings implicate a role for CSB in transcription elongation, and they strongly suggest that impaired transcription elongation is the underlying cause of the developmental problems in CS patients.


Retrovirology ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 124 ◽  
Author(s):  
Mayte Coiras ◽  
Marta Montes ◽  
Immaculada Montanuy ◽  
María López-Huertas ◽  
Elena Mateos ◽  
...  

2016 ◽  
Vol 428 (12) ◽  
pp. 2623-2635 ◽  
Author(s):  
Tassa Saldi ◽  
Michael A. Cortazar ◽  
Ryan M. Sheridan ◽  
David L. Bentley

Sign in / Sign up

Export Citation Format

Share Document