Faculty Opinions recommendation of A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy.

Author(s):  
Robert Petersen
2019 ◽  
Vol 11 (485) ◽  
pp. eaat3005 ◽  
Author(s):  
Israel Hernandez ◽  
Gabriel Luna ◽  
Jennifer N. Rauch ◽  
Surya A. Reis ◽  
Michel Giroux ◽  
...  

Tau inclusions are a shared feature of many neurodegenerative diseases, among them frontotemporal dementia caused by tau mutations. Treatment approaches for these conditions include targeting posttranslational modifications of tau proteins, maintaining a steady-state amount of tau, and preventing its tendency to aggregate. We discovered a new regulatory pathway for tau degradation that operates through the farnesylated protein, Rhes, a GTPase in the Ras family. Here, we show that treatment with the farnesyltransferase inhibitor lonafarnib reduced Rhes and decreased brain atrophy, tau inclusions, tau sumoylation, and tau ubiquitination in the rTg4510 mouse model of tauopathy. In addition, lonafarnib treatment attenuated behavioral abnormalities in rTg4510 mice and reduced microgliosis in mouse brain. Direct reduction of Rhes in the rTg4510 mouse by siRNA reproduced the results observed with lonafarnib treatment. The mechanism of lonafarnib action mediated by Rhes to reduce tau pathology was shown to operate through activation of lysosomes. We finally showed in mouse brain and in human induced pluripotent stem cell–derived neurons a normal developmental increase in Rhes that was initially suppressed by tau mutations. The known safety of lonafarnib revealed in human clinical trials for cancer suggests that this drug could be repurposed for treating tauopathies.


2020 ◽  
Author(s):  
Alexander J. Ehrenberg ◽  
Kun Leng ◽  
Israel Hernandez ◽  
Caroline Lew ◽  
William W. Seeley ◽  
...  

ABSTRACTThe farnesyltransferase inhibitor lonafarnib reduces tau inclusion burden and atrophy in familial tauopathy models by inhibiting farnesylation on the Ras GTPase, Rhes, and activating autophagy. While hinting at a role of Rhes in tau aggregation, it is unclear how translatable these results are for sporadic forms of tauopathy. We used a combination of quantitative pathology using multiplex immunofluorescence for Rhes, several tau post-translational modifications, and single nucleus RNA sequence analysis to interrogate Rhes presence and distribution in human cortical neurons and Rhes relation to tau and TDP-43 changes. snRNA data suggest that Rhes is found in all cortical neuron subpopulations, not only in striatum cells. Histologic investigation in hippocampal formation from multiple postmortem cases in five different tauopathies and healthy controls and TDP-43 proteinopathy showed that nearly all neurons in control brains display a pattern of diffuse cytoplasmic Rhes positivity. However, in the presence of abnormal tau, but not TDP-43 inclusions, the patterns of neuronal cytoplasmic Rhes tend to present as either punctiform or fully absent. Our findings reinforce the relevance of the link between Rhes changes and tau pathology suggested by in vivo and in vitro models of tauopathy and support a potential clinical application of lonafarnib to tauopathies.


Sign in / Sign up

Export Citation Format

Share Document