scholarly journals Faculty Opinions recommendation of Hidden kinetic traps in multidomain folding highlight the presence of a misfolded but functionally competent intermediate.

Author(s):  
Benoit Coulombe
Keyword(s):  
Author(s):  
Shiwei Wang ◽  
Anton Chavez ◽  
Simil Thomas ◽  
Hong Li ◽  
Nathan C. Flanders ◽  
...  

This work reports on the assembly of imine-linked macrocycles that serve as models of two-dimensional covalent organic frameworks (2D COFs). Interlayer interactions play an important role in the formation of 2D COFs, yet the effect of monomer structure on COF formation, crystallinity, and susceptibility to exfoliation are not well understood. For example, monomers with both electron-rich and electron-poor π-electron systems have been proposed to strengthen interlayer inter-actions and improve crystallinity. Here we probe these effects by studying the stacking behavior of imine-linked macrocycles that represent discrete models of 2D COFs. <div><br></div><div>Specifically, macrocycles based on terephthaldehyde (PDA) or 2,5-dimethoxyterephthaldehyde (DMPDA) stack upon cooling molecularly dissolved solutions. Both macrocycles assemble cooperatively with similar ΔHe values of -97 kJ/mol and -101 kJ/mol, respectively, although the DMPDA macrocycle assembly process showed a more straightforward temperature dependence. Circular dichroism spectroscopy performed on macrocycles bearing chiral side chains revealed a helix reversion process for the PDA macrocycles that was not observed for the DMPDA macrocycles. <br></div><div><br></div><div>Given the structural similarity of these monomers, these findings demonstrate that the stacking processes associated with nanotubes derived from these macrocycles, as well as for the corresponding COFs, are complex and susceptible to kinetic traps, casting doubt on the relevance of thermodynamic arguments for improving materials quality. <br></div>


1994 ◽  
Vol 27 (17) ◽  
pp. 4721-4725 ◽  
Author(s):  
Hildegard M. Schneider ◽  
Steve Granick ◽  
Steve Smith

2018 ◽  
Vol 58 (2) ◽  
pp. 510-514 ◽  
Author(s):  
Jorge S. Valera ◽  
Rafael Gómez ◽  
Luis Sánchez

2019 ◽  
Vol 21 (1) ◽  
pp. 213
Author(s):  
Federico Norbiato ◽  
Flavio Seno ◽  
Antonio Trovato ◽  
Marco Baiesi

Many native structures of proteins accomodate complex topological motifs such as knots, lassos, and other geometrical entanglements. How proteins can fold quickly even in the presence of such topological obstacles is a debated question in structural biology. Recently, the hypothesis that energetic frustration might be a mechanism to avoid topological frustration has been put forward based on the empirical observation that loops involved in entanglements are stabilized by weak interactions between amino-acids at their extrema. To verify this idea, we use a toy lattice model for the folding of proteins into two almost identical structures, one entangled and one not. As expected, the folding time is longer when random sequences folds into the entangled structure. This holds also under an evolutionary pressure simulated by optimizing the folding time. It turns out that optmized protein sequences in the entangled structure are in fact characterized by frustrated interactions at the closures of entangled loops. This phenomenon is much less enhanced in the control case where the entanglement is not present. Our findings, which are in agreement with experimental observations, corroborate the idea that an evolutionary pressure shapes the folding funnel to avoid topological and kinetic traps.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Guangyao Zhou ◽  
Jackson Loper ◽  
Stuart Geman

Abstract Background A folding RNA molecule encounters multiple opportunities to form non-native yet energetically favorable pairings of nucleotide sequences. Given this forbidding free-energy landscape, mechanisms have evolved that contribute to a directed and efficient folding process, including catalytic proteins and error-detecting chaperones. Among structural RNA molecules we make a distinction between “bound” molecules, which are active as part of ribonucleoprotein (RNP) complexes, and “unbound,” with physiological functions performed without necessarily being bound in RNP complexes. We hypothesized that unbound molecules, lacking the partnering structure of a protein, would be more vulnerable than bound molecules to kinetic traps that compete with native stem structures. We defined an “ambiguity index”—a normalized function of the primary and secondary structure of an individual molecule that measures the number of kinetic traps available to nucleotide sequences that are paired in the native structure, presuming that unbound molecules would have lower indexes. The ambiguity index depends on the purported secondary structure, and was computed under both the comparative (“gold standard”) and an equilibrium-based prediction which approximates the minimum free energy (MFE) structure. Arguing that kinetically accessible metastable structures might be more biologically relevant than thermodynamic equilibrium structures, we also hypothesized that MFE-derived ambiguities would be less effective in separating bound and unbound molecules. Results We have introduced an intuitive and easily computed function of primary and secondary structures that measures the availability of complementary sequences that could disrupt the formation of native stems on a given molecule—an ambiguity index. Using comparative secondary structures, the ambiguity index is systematically smaller among unbound than bound molecules, as expected. Furthermore, the effect is lost when the presumably more accurate comparative structure is replaced instead by the MFE structure. Conclusions A statistical analysis of the relationship between the primary and secondary structures of non-coding RNA molecules suggests that stem-disrupting kinetic traps are substantially less prevalent in molecules not participating in RNP complexes. In that this distinction is apparent under the comparative but not the MFE secondary structure, the results highlight a possible deficiency in structure predictions when based upon assumptions of thermodynamic equilibrium.


1999 ◽  
Vol 144 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Rachel Hellman ◽  
Marc Vanhove ◽  
Annabelle Lejeune ◽  
Fred J. Stevens ◽  
Linda M. Hendershot

Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.


2020 ◽  
Vol 117 (3) ◽  
pp. 1485-1495 ◽  
Author(s):  
Amir Bitran ◽  
William M. Jacobs ◽  
Xiadi Zhai ◽  
Eugene Shakhnovich

Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.


2004 ◽  
Vol 13 (8) ◽  
pp. 2196-2206 ◽  
Author(s):  
Yun-Ru Chen ◽  
A. Clay Clark
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document