scholarly journals The In Vivo Association of BiP with Newly Synthesized Proteins Is Dependent on the Rate and Stability of Folding and Not Simply on the Presence of Sequences That Can Bind to BiP

1999 ◽  
Vol 144 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Rachel Hellman ◽  
Marc Vanhove ◽  
Annabelle Lejeune ◽  
Fred J. Stevens ◽  
Linda M. Hendershot

Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.

1983 ◽  
Vol 3 (8) ◽  
pp. 1362-1370 ◽  
Author(s):  
H. Bussey ◽  
D. Saville ◽  
D. Greene ◽  
D. J. Tipper ◽  
K. A. Bostian

Killer toxin secretion was blocked at the restrictive temperature inSaccharomyces cerevisiae secmutants with conditional defects in theS. cerevisiaesecretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in allsecmutants at the restrictive temperature. Insec18the protoxin was stable after a chase; but insec7andsec1the protoxin was unstable, and insec111K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and insec7andsec1cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined twokexmutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable inkex1but unstable inkex2. Protoxin stability inkex1 kex2double mutants indicated the orderkex1→kex2in the protoxin processing pathway. TPCK did not block protoxin instability inkex2mutants. This suggested that theKEX1- andKEX2-dependent steps preceded thesec7Golgi block. We attempted to localize the protoxin inS. cerevisiaecells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


2020 ◽  
Vol 117 (3) ◽  
pp. 1485-1495 ◽  
Author(s):  
Amir Bitran ◽  
William M. Jacobs ◽  
Xiadi Zhai ◽  
Eugene Shakhnovich

Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Y. Grinblat ◽  
S. Zusman ◽  
G. Yee ◽  
R.O. Hynes ◽  
F.C. Kafatos

Integrins constitute a family of membrane-spanning, heterodimeric proteins that mediate adhesive interactions between cells and surrounding extracellular matrices (or other cells) and participate in signal transduction. We are interested in assessing integrin functions in the context of developing Drosophila melanogaster. This report, using mutants of the beta PS subunit encoded by the myospheroid (mys) locus, analyzes the relationships between integrin protein structure and developmental functions in an intact organism. As a first step in this analysis, we demonstrated the ability of a fragment of wild-type mys genomic DNA, introduced into the germ line in a P-element vector P[mys+], to rescue phenotypes attributed to lack of (or defects in) the endogenous beta PS during several discrete morphogenetic events. We then produced in vitro a series of modifications of the wild-type P[mys+] transposon, which encode beta PS derivatives with mutations within the small and highly conserved cytoplasmic domain. In vivo analysis of these mutant transposons led to the following conclusions. (1) The cytoplasmic tail of beta PS is essential for all developmental functions of the protein that were assayed. (2) An intron at a conserved position in the DNA sequence encoding the cytoplasmic tail is thought to participate in important alternative splicing events in vertebrate beta integrin subunit genes, but is not required for the developmental functions of the mys gene assayed here. (3) Phosphorylation on two conserved tyrosines found in the C terminus of the beta PS cytoplasmic tail is not necessary for the tested developmental functions. (4) Four highly conserved amino acid residues found in the N-terminal portion of the cytoplasmic tail are important but not critical for the developmental functions of beta PS; furthermore, the efficiencies with which these mutant proteins function during different morphogenetic processes vary greatly, strongly suggesting that the cytoplasmic interactions involving PS integrins are developmentally modulated.


1999 ◽  
Vol 19 (11) ◽  
pp. 7568-7576 ◽  
Author(s):  
Shuang Zhang ◽  
Carol J. Williams ◽  
Kevin Hagan ◽  
Stuart W. Peltz

ABSTRACT Decapping is a rate-limiting step in the decay of many yeast mRNAs; the activity of the decapping enzyme therefore plays a significant role in determining RNA stability. Using an in vitro decapping assay, we have identified a factor, Vps16p, that regulates the activity of the yeast decapping enzyme, Dcp1p. Mutations in the VPS16 gene result in a reduction of decapping activity in vitro and in the stabilization of both wild-type and nonsense-codon-containing mRNAs in vivo. The mrt1-3 allele, previously shown to affect the turnover of wild-type mRNAs, results in a similar in vitro phenotype. Extracts from both vps16 and mrt1 mutant strains inhibit the activity of purified Flag-Dcp1p. We have identified a 70-kDa protein which copurifies with Flag-Dcp1p as the abundant Hsp70 family member Ssa1p/2p. Intriguingly, the interaction with Ssa1p/2p is enhanced in strains with mutations in vps16 ormrt1. We propose that Hsp70s may be involved in the regulation of mRNA decapping.


2020 ◽  
Author(s):  
Jinlei Zhao ◽  
Shahista Nisa ◽  
Michael S. Donnenberg

AbstractType IV pili (T4Ps) are multifunctional protein fibers found in many bacteria and archaea. All T4P systems have an extension ATPase, which provides the energy required to push structural subunits out of the membrane. We previously reported that the BfpD T4P ATPase from enteropathogenic E. coli (EPEC) has the expected hexameric structure and ATPase activity, the latter enhanced by the presence of the N-terminal cytoplasmic domains of its partner proteins BfpC and BfpE. In this study, we further investigated the kinetics of the BfpD ATPase. Despite high purity of the proteins, the reported enhanced ATPase activity was found to be from (an) ATPase(s) contaminating the N-BfpC preparation. Furthermore, although two mutations in highly conserved bfpD sites led to loss of function in vivo, the purified mutant proteins retained some ATPase activity, albeit less than the wild-type protein. Therefore, the observed ATPase activity of BfpD was also affected by (a) contaminating ATPase(s). Expression of the mutant bfpD alleles did not interfere with BfpD function in bacteria that also expressed wild-type BfpD. However, a similar mutation of bfpF, which encodes the retraction ATPase, blocked the function of wild-type BfpF when both were present. These results highlight similarities and differences in function and activity of T4P extension and retraction ATPases in EPEC.


2014 ◽  
Vol 111 (10) ◽  
pp. 1927-1939 ◽  
Author(s):  
E. D. Gaier ◽  
R. M. Rodriguiz ◽  
J. Zhou ◽  
M. Ralle ◽  
W. C. Wetsel ◽  
...  

Mice with a single copy of the peptide amidating monooxygenase ( Pam) gene (PAM+/−) are impaired in contextual and cued fear conditioning. These abnormalities coincide with deficient long-term potentiation (LTP) at excitatory thalamic afferent synapses onto pyramidal neurons in the lateral amygdala. Slice recordings from PAM+/− mice identified an increase in GABAergic tone (Gaier ED, Rodriguiz RM, Ma XM, Sivaramakrishnan S, Bousquet-Moore D, Wetsel WC, Eipper BA, Mains RE. J Neurosci 30: 13656–13669, 2010). Biochemical data indicate a tissue-specific deficit in Cu content in the amygdala; amygdalar expression of Atox-1 and Atp7a, essential for transport of Cu into the secretory pathway, is reduced in PAM+/− mice. When PAM+/− mice were fed a diet supplemented with Cu, the impairments in fear conditioning were reversed, and LTP was normalized in amygdala slice recordings. A role for endogenous Cu in amygdalar LTP was established by the inhibitory effect of a brief incubation of wild-type slices with bathocuproine disulfonate, a highly selective, cell-impermeant Cu chelator. Interestingly, bath-applied CuSO4 had no effect on excitatory currents but reversibly potentiated the disynaptic inhibitory current. Bath-applied CuSO4 was sufficient to potentiate wild-type amygdala afferent synapses. The ability of dietary Cu to affect signaling in pathways that govern fear-based behaviors supports an essential physiological role for Cu in amygdalar function at both the synaptic and behavioral levels. This work is relevant to neurological and psychiatric disorders in which disturbed Cu homeostasis could contribute to altered synaptic transmission, including Wilson's, Menkes, Alzheimer's, and prion-related diseases.


1983 ◽  
Vol 3 (8) ◽  
pp. 1362-1370
Author(s):  
H. Bussey ◽  
D. Saville ◽  
D. Greene ◽  
D. J. Tipper ◽  
K. A. Bostian

Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum ( sec18 ), Golgi ( sec7 ), or secretory vesicles ( sec1 ). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl- l -phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post- sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2 . Protoxin stability in kex1 kex2 double mutants indicated the order kex1 → kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1 - and KEX2 -dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


2004 ◽  
Vol 279 (19) ◽  
pp. 19551-19558 ◽  
Author(s):  
Charles T. Lauhon ◽  
Elizabeth Skovran ◽  
Hugo D. Urbina ◽  
Diana M. Downs ◽  
Larry E. Vickery

IscS catalyzes the fragmentation ofl-cysteine tol-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. InEscherichia coliIscS, the active site cysteine Cys328resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys328identified additional residues important for IscS functionin vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesisin vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s2C and ms2i6A) yet showed wild type levels of Fe-S-independent thionucleosides (s4U and mnm5s2U) that require persulfide formation and transfer.In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesisin vivowithout detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.


2019 ◽  
Author(s):  
Amir Bitran ◽  
William M. Jacobs ◽  
Xiadi Zhai ◽  
Eugene Shakhnovich

Many large proteins suffer from slow or inefficient folding in vitro. Here, we provide evidence that this problem can be alleviated in vivo if proteins start folding co-translationally. Using an all-atom simulation-based algorithm, we compute the folding properties of various large protein domains as a function of nascent chain length, and find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by non-native interactions involving C-terminal residues. Thus, co-translational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modelling, we show that under certain conditions, such a slowdown indeed improves co-translational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from co-translational folding due to a lack of significant non-native interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell, and how biomolecular self-assembly may be optimized evolutionarily.Significance StatementMany proteins must adopt a specific structure in order to perform their functions, and failure to do so has been linked to disease. Although small proteins often fold rapidly and spontaneously to their native conformations, larger proteins are less likely to fold correctly due to the myriad incorrect arrangements they can adopt. Here, we show that this problem can be alleviated if proteins start folding while they are being translated, namely, built one amino acid at a time on the ribosome. This process of co-translational folding biases certain proteins away from misfolded states that tend to hinder spontaneous refolding. Signatures of unusually slow translation suggest that some of these proteins have evolved to fold co-translationally.


Sign in / Sign up

Export Citation Format

Share Document