Faculty Opinions recommendation of Metatranscriptomics by In Situ RNA Stabilization Directly and Comprehensively Revealed Episymbiotic Microbial Communities of Deep-Sea Squat Lobsters.

Author(s):  
Michail Yakimov
mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Kaori Motoki ◽  
Tomo-o Watsuji ◽  
Yoshihiro Takaki ◽  
Ken Takai ◽  
Wataru Iwasaki

ABSTRACT Shinkaia crosnieri is an invertebrate that inhabits an area around deep-sea hydrothermal vents in the Okinawa Trough in Japan by harboring episymbiotic microbes as the primary nutrition. To reveal physiology and phylogenetic composition of the active episymbiotic populations, metatranscriptomics is expected to be a powerful approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. Here, we conducted direct metatranscriptomic analysis of S. crosnieri episymbionts by applying in situ RNA stabilization equipment. As expected, we obtained RNA expression profiles that were substantially different from those obtained by conventional metatranscriptomics (i.e., stabilization after retrieval). The episymbiotic community members were dominated by three orders, namely, Thiotrichales, Methylococcales, and Campylobacterales, and the Campylobacterales members were mostly dominated by the Sulfurovum genus. At a finer phylogenetic scale, the episymbiotic communities on different host individuals shared many species, indicating that the episymbionts on each host individual are not descendants of a few founder cells but are horizontally exchanged. Furthermore, our analysis revealed the key metabolisms of the community: two carbon fixation pathways, a formaldehyde assimilation pathway, and utilization of five electron donors (sulfide, thiosulfate, sulfur, methane, and ammonia) and two electron accepters (oxygen and nitrate/nitrite). Importantly, it was suggested that Thiotrichales episymbionts can utilize intercellular sulfur globules even when sulfur compounds are not usable, possibly also in a detached and free-living state. IMPORTANCE Deep-sea hydrothermal vent ecosystems remain mysterious. To depict in detail the enigmatic life of chemosynthetic microbes, which are key primary producers in these ecosystems, metatranscriptomic analysis is expected to be a promising approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. In this study, we conducted direct metatranscriptome analysis of microbial episymbionts of deep-sea squat lobsters (Shinkaia crosnieri) by applying in situ RNA stabilization equipment. Compared to conventional metatranscriptomics (i.e., RNA stabilization after retrieval), our method provided substantially different RNA expression profiles. Moreover, we discovered that S. crosnieri and its episymbiotic microbes constitute complex and resilient ecosystems, where closely related but various episymbionts are stably maintained by horizontal exchange and partly by their sulfur storage ability for survival even when sulfur compounds are not usable, likely also in a detached and free-living state.


Author(s):  
Caroline S. Fortunato ◽  
David A. Butterfield ◽  
Benjamin Larson ◽  
Noah Lawrence-Slavas ◽  
Christopher K. Algar ◽  
...  

Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed an ROV-powered incubator instrument to carry out and compare results from in situ and shipboard RNA Stable Isotope Probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under near-native conditions in the ocean. Importance: Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delay, with shipboard microbial communities more stressed compared to seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.


2020 ◽  
Author(s):  
Caroline S. Fortunato ◽  
David A. Butterfield ◽  
Benjamin Larson ◽  
Noah Lawrence-Slavas ◽  
Christopher K. Algar ◽  
...  

AbstractDepressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed an ROV-powered incubator instrument to carry out and compare results from in situ and shipboard RNA Stable Isotope Probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labelled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations suggesting that hydrostatic pressure ameliorated thermal stress in the metabolically active microbes in the seafloor incubations. Together, results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under near-native conditions in the ocean.


2015 ◽  
Vol 49 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Hitoshi Kodamatani ◽  
Yuriko Kono ◽  
Akinori Takeuchi ◽  
Ken Takai ◽  
...  

2016 ◽  
Vol 2 (5) ◽  
pp. 563-566.e5 ◽  
Author(s):  
Chandra Sekhar Pedamallu ◽  
Ami S. Bhatt ◽  
Susan Bullman ◽  
Sharyle Fowler ◽  
Samuel S. Freeman ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


2011 ◽  
Vol 250 (4) ◽  
pp. 367-377 ◽  
Author(s):  
Shane T. Ahyong ◽  
Nikos Andreakis ◽  
Joanne Taylor

2015 ◽  
Vol 1130 ◽  
pp. 19-22
Author(s):  
M.P. Belykh ◽  
S.V. Petrov ◽  
V.F. Petrov ◽  
A.Yu. Chikin ◽  
N.L. Belkova

The methods of biodegradation are of special interest because they help solving environmental problems of wastes detoxification from gold-mining operations. The use of bacterial strains is a promising approach in the field of biotechnology to destruct cyanide-bearing compounds. The diversity of microbial communities both in heap in situ and in the enriched cultures was studied with molecular genetic methods. The differences in representation of bacteria, cultivated in unexploitable and operating heaps, are territory, site and heap specific. The strains of Pseudomonas sp. and Methylobacterium sp. possess the biotechnological potential and might be used in biodegradation of heap leaching wastes in extreme continental climate.


Sign in / Sign up

Export Citation Format

Share Document