scholarly journals Seafloor incubation experiment with deep-sea hydrothermal vent fluid reveals effect of pressure and lag time on autotrophic microbial communities

Author(s):  
Caroline S. Fortunato ◽  
David A. Butterfield ◽  
Benjamin Larson ◽  
Noah Lawrence-Slavas ◽  
Christopher K. Algar ◽  
...  

Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed an ROV-powered incubator instrument to carry out and compare results from in situ and shipboard RNA Stable Isotope Probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under near-native conditions in the ocean. Importance: Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delay, with shipboard microbial communities more stressed compared to seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.

2020 ◽  
Author(s):  
Caroline S. Fortunato ◽  
David A. Butterfield ◽  
Benjamin Larson ◽  
Noah Lawrence-Slavas ◽  
Christopher K. Algar ◽  
...  

AbstractDepressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed an ROV-powered incubator instrument to carry out and compare results from in situ and shipboard RNA Stable Isotope Probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labelled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations suggesting that hydrostatic pressure ameliorated thermal stress in the metabolically active microbes in the seafloor incubations. Together, results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under near-native conditions in the ocean.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Ryan M. Ziels ◽  
Masaru K. Nobu ◽  
Diana Z. Sousa

ABSTRACT Linking the genomic content of uncultivated microbes to their metabolic functions remains a critical challenge in microbial ecology. Resolving this challenge has implications for improving our management of key microbial interactions in biotechnologies such as anaerobic digestion, which relies on slow-growing syntrophic and methanogenic communities to produce renewable methane from organic waste. In this study, we combined DNA stable-isotope probing (SIP) with genome-centric metagenomics to recover the genomes of populations enriched in 13C after growing on [13C]butyrate. Differential abundance analysis of recovered genomic bins across the SIP metagenomes identified two metagenome-assembled genomes (MAGs) that were significantly enriched in heavy [13C]DNA. Phylogenomic analysis assigned one MAG to the genus Syntrophomonas and the other MAG to the genus Methanothrix. Metabolic reconstruction of the annotated genomes showed that the Syntrophomonas genome encoded all the enzymes for beta-oxidizing butyrate, as well as several mechanisms for interspecies electron transfer via electron transfer flavoproteins, hydrogenases, and formate dehydrogenases. The Syntrophomonas genome shared low average nucleotide identity (<95%) with any cultured representative species, indicating that it is a novel species that plays a significant role in syntrophic butyrate degradation within anaerobic digesters. The Methanothrix genome contained the complete pathway for acetoclastic methanogenesis, indicating that it was enriched in 13C from syntrophic acetate transfer. This study demonstrates the potential of stable-isotope-informed genome-resolved metagenomics to identify in situ interspecies metabolic cooperation within syntrophic consortia important to anaerobic waste treatment as well as global carbon cycling. IMPORTANCE Predicting the metabolic potential and ecophysiology of mixed microbial communities remains a major challenge, especially for slow-growing anaerobes that are difficult to isolate. Unraveling the in situ metabolic activities of uncultured species may enable a more descriptive framework to model substrate transformations by microbiomes, which has broad implications for advancing the fields of biotechnology, global biogeochemistry, and human health. Here, we investigated the in situ function of mixed microbiomes by combining stable-isotope probing with metagenomics to identify the genomes of active syntrophic populations converting butyrate, a C4 fatty acid, into methane within anaerobic digesters. This approach thus moves beyond the mere presence of metabolic genes to resolve “who is doing what” by obtaining confirmatory assimilation of the labeled substrate into the DNA signature. Our findings provide a framework to further link the genomic identities of uncultured microbes with their ecological function within microbiomes driving many important biotechnological and global processes.


2019 ◽  
Vol 5 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Clayton Evert ◽  
Tina Loesekann ◽  
Ganapati Bhat ◽  
Asif Shajahan ◽  
Roberto Sonon ◽  
...  

2020 ◽  
Author(s):  
Xiuran Yin ◽  
Mingwei Cai ◽  
Yang Liu ◽  
Guowei Zhou ◽  
Tim Richter-Heitmann ◽  
...  

Abstract Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for Candidatus ‘Prometheoarchaeum syntrophicum’. Here, we tracked the activity of Lokiarchaeota in incubations with Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2, or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2 instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.


2005 ◽  
Vol 71 (12) ◽  
pp. 8683-8691 ◽  
Author(s):  
Maneesha P. Ginige ◽  
Jürg Keller ◽  
Linda L. Blackall

ABSTRACT The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [13C]acetate was used in SIP to label the DNA of the denitrifiers. The [13C]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking up [14C]acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the wastewater industry to enhance denitrification.


2014 ◽  
Vol 9 (3) ◽  
pp. 453-464 ◽  
Author(s):  
Mary Beth Leigh ◽  
Wei-Min Wu ◽  
Erick Cardenas ◽  
Ondrej Uhlik ◽  
Sue Carroll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document