Faculty Opinions recommendation of Impact of the metabolic syndrome on peripheral nerve structure and function in type 2 diabetes.

Author(s):  
Rayaz Malik ◽  
Shazli Azmi
Author(s):  
Tushar Issar ◽  
Shyam S. Tummanapalli ◽  
Adeniyi A. Borire ◽  
Natalie C. G. Kwai ◽  
Ann M. Poynten ◽  
...  

2019 ◽  
Vol 37 (2) ◽  
pp. 326-334 ◽  
Author(s):  
A. Yan ◽  
T. Issar ◽  
S. S. Tummanapalli ◽  
M. Markoulli ◽  
N. C. G. Kwai ◽  
...  

2006 ◽  
Vol 8 (27) ◽  
pp. 1-12 ◽  
Author(s):  
Francis Vasseur ◽  
David Meyre ◽  
Philippe Froguel

Adiponectin, a protein exclusively secreted by adipose tissue but present at low levels in obesity, is now widely recognised as a key determinant of insulin sensitivity and of protection against obesity-associated metabolic syndrome. In this review we explain how genetic findings have contributed to a better understanding of the physiological role of adiponectin in humans. The adiponectin-encoding gene, ADIPOQ (ACDC), is very polymorphic: many frequent exonic synonymous, intronic and promoter single-nucleotide polymorphisms (SNPs) have been identified, as well as a few rare exonic amino acid substitutions. Several of these variations additively contribute to the modulation of adiponectin level and function, and associate with insulin sensitivity, type 2 diabetes and vascular complications of obesity.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 253
Author(s):  
Graciela Gavia-García ◽  
Juana Rosado-Pérez ◽  
Taide Laurita Arista-Ugalde ◽  
Itzen Aguiñiga-Sánchez ◽  
Edelmiro Santiago-Osorio ◽  
...  

A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.


Sign in / Sign up

Export Citation Format

Share Document