Faculty Opinions recommendation of Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair.

Author(s):  
Lee Zou
2020 ◽  
Vol 10 (10) ◽  
pp. 3821-3829
Author(s):  
Dionna Gamble ◽  
Samantha Shaltz ◽  
Sue Jinks-Robertson

Mitotic recombination is the predominant mechanism for repairing double-strand breaks in Saccharomyces cerevisiae. Current recombination models are largely based on studies utilizing the enzyme I-SceI or HO to create a site-specific break, each of which generates broken ends with 3′ overhangs. In this study sequence-diverged ectopic substrates were used to assess whether the frequent Pol δ-mediated removal of a mismatch 8 nucleotides from a 3′ end affects recombination outcomes and whether the presence of a 3′ vs. 5′ overhang at the break site alters outcomes. Recombination outcomes monitored were the distributions of recombination products into crossovers vs. noncrossovers, and the position/length of transferred sequence (heteroduplex DNA) in noncrossover products. A terminal mismatch that was 22 nucleotides from the 3′ end was rarely removed and the greater distance from the end did not affect recombination outcomes. To determine whether the recombinational repair of breaks with 3′ vs. 5′ overhangs differs, we compared the well-studied 3′ overhang created by I-SceI to a 5′ overhang created by a ZFN (Zinc Finger Nuclease). Initiation with the ZFN yielded more recombinants, consistent with more efficient cleavage and potentially faster repair rate relative to I-SceI. While there were proportionally more COs among ZFN- than I-SceI-initiated events, NCOs in the two systems were indistinguishable in terms of the extent of strand transfer. These data demonstrate that the method of DSB induction and the resulting differences in end polarity have little effect on mitotic recombination outcomes despite potential differences in repair rate.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Lee A. Uranga ◽  
Emigdio D. Reyes ◽  
Praveen L. Patidar ◽  
Lindsay N. Redman ◽  
Shelley L. Lusetti

2007 ◽  
Vol 76 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Ge Wang ◽  
Robert J. Maier

ABSTRACT Homologous recombination is one of the key mechanisms responsible for the repair of DNA double-strand breaks. Recombinational repair normally requires a battery of proteins, each with specific DNA recognition, strand transfer, resolution, or other functions. Helicobacter pylori lacks many of the proteins normally involved in the early stage (presynapsis) of recombinational repair, but it has a RecN homologue with an unclear function. A recN mutant strain of H. pylori was shown to be much more sensitive than its parent to mitomycin C, an agent predominantly causing DNA double-strand breaks. The recN strain was unable to survive exposure to either air or acid as well as the parent strain, and air exposure resulted in no viable recN cells recovered after 8 h. In oxidative stress conditions (i.e., air exposure), a recN strain accumulated significantly more damaged (multiply fragmented) DNA than the parent strain. To assess the DNA recombination abilities of strains, their transformation abilities were compared by separately monitoring transformation using H. pylori DNA fragments containing either a site-specific mutation (conferring rifampin resistance) or a large insertion (kanamycin resistance cassette). The transformation frequencies using the two types of DNA donor were 10- and 50-fold lower, respectively, for the recN strain than for the wild type, indicating that RecN plays an important role in facilitating DNA recombination. In two separate mouse colonization experiments, the recN strain colonized most of the stomachs, but the average number of recovered cells was 10-fold less for the mutant than for the parent strain (a statistically significant difference). Complementation of the recN strain by chromosomal insertion of a functional recN gene restored both the recombination frequency and mouse colonization ability to the wild-type levels. Thus, H. pylori RecN, as a component of DNA recombinational repair, plays a significant role in H. pylori survival in vivo.


2005 ◽  
Vol 187 (20) ◽  
pp. 7027-7037 ◽  
Author(s):  
Jennifer L. Robbins-Manke ◽  
Zoran Z. Zdraveski ◽  
Martin Marinus ◽  
John M. Essigmann

ABSTRACT DNA adenine methylation by DNA adenine methyltransferase (Dam) in Escherichia coli plays an important role in processes such as DNA replication initiation, gene expression regulation, and mismatch repair. In addition, E. coli strains deficient in Dam are hypersensitive to DNA-damaging agents. We used genome microarrays to compare the transcriptional profiles of E. coli strains deficient in Dam and mismatch repair (dam, dam mutS, and mutS mutants). Our results show that >200 genes are expressed at a higher level in the dam strain, while an additional mutation in mutS suppresses the induction of many of the same genes. We also show by microarray and semiquantitative real-time reverse transcription-PCR that both dam and dam mutS strains show derepression of LexA-regulated SOS genes as well as the up-regulation of other non-SOS genes involved in DNA repair. To correlate the level of SOS induction and the up-regulation of genes involved in recombinational repair with the level of DNA damage, we used neutral single-cell electrophoresis to determine the number of double-strand breaks per cell in each of the strains. We find that dam mutant E. coli strains have a significantly higher level of double-strand breaks than the other strains. We also observe a broad range in the number of double-strand breaks in dam mutant cells, with a minority of cells showing as many as 10 or more double-strand breaks. We propose that the up-regulation of recombinational repair in dam mutants allows for the efficient repair of double-strand breaks whose formation is dependent on functional mismatch repair.


2020 ◽  
Author(s):  
Dionna Gamble ◽  
Samantha Shaltz ◽  
Sue Jinks-Robertson

ABSTRACTMitotic recombination is the predominant mechanism for repairing double-strand breaks in Saccharomyces cerevisiae. Current recombination models are largely based on studies utilizing the enzyme I-SceI or HO to create a site-specific break, each of which generates broken ends with 3’ overhangs. In this study sequence-diverged ectopic substrates were used to assess whether the frequent Pol δ-mediated removal of a mismatch 8 nucleotides from a 3’ end affects recombination outcomes and whether the presence of a 3’ versus 5’ overhang at the break site alters outcomes. Recombination outcomes monitored were the distributions of recombination products into crossovers versus noncrossovers, and the position/length of transferred sequence (heteroduplex DNA) in noncrossover products. A terminal mismatch that was 22 nucleotides from the 3’ end was rarely removed and the greater distance from the end did not affect recombination outcomes. To determine whether the recombinational repair of breaks with 3’ versus 5’ overhangs differs, we compared the well-studied 3’ overhang created by I-SceI to a 5’ overhang created by a ZFN (Zinc Finger Nuclease). Initiation with the ZFN yielded more recombinants, consistent with more efficient cleavage and potentially faster repair rate relative to I-SceI. While there were proportionally more COs among ZFN-than I-SceI-initiated events, NCOs in the two systems were indistinguishable in terms of the extent of strand transfer. These data demonstrate that the method of DSB induction and the resulting differences in end polarity have little effect on mitotic recombination outcomes despite potential differences in repair rate.


2005 ◽  
Vol 57 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Tom R. Meddows ◽  
Andrew P. Savory ◽  
Jane I. Grove ◽  
Timothy Moore ◽  
Robert G. Lloyd

2019 ◽  
Author(s):  
Xuefeng Pan ◽  
Li Yang ◽  
Nan Jiang ◽  
Xifang Chen ◽  
Bo Li ◽  
...  

AbstractFaithful duplication of genomic DNA relies not only on the fidelity of DNA replication itself, but also on fully functional DNA repair and homologous recombination machinery. We report a molecular mechanism responsible for deciding homologous recombinational repair pathways during replication dictated by binding of RecO and RecG to SSB in E.coli. Using a RecG-yfp fusion protein, we found that RecG-yfp foci appeared only in the ΔrecG, ΔrecO and ΔrecA, ΔrecO double mutants. Surprisingly, foci were not observed in wild-type ΔrecG, or double mutants where recG and either recF or, separately recR were deleted. In addition, formation of RecG-yfp foci in the ΔrecO::kanR required wildtype ssb, as ssb-113 could not substitute. This suggests that RecG and RecO binding to SSB is competitive. We also found that the UV resistance of recO alone mutant increased to certain extent by supplementing RecG. In an ssb-113 mutant, RecO and RecG worked following a different pattern. Both RecO and RecG were able to participate in repairing UV damages when grown at permissive temperature, while they could also be involved in making DNA double strand breaks when grown at nonpermissive temperature. So, our results suggested that differential binding of RecG and RecO to SSB in a DNA replication fork in Escherichia coli.may be involved in determining whether the SDSA or DSBR pathway of homologous recombinational repair is used.Author summarySingle strand DNA binding proteins (SSB) stabilize DNA holoenzyme and prevent single strand DNA from folding into non-B DNA structures in a DNA replication fork. It has also been revealed that SSB can also act as a platform for some proteins working in DNA repair and recombination to access DNA molecules when DNA replication fork needs to be reestablished. In Escherichia coli, several proteins working primarily in DNA repair and recombination were found to participate in DNA replication fork resumption by physically interacting with SSB, including RecO and RecG etc. However the hierarchy of these proteins interacting with SSB in Escherichia coli has not been well defined. In this study, we demonstrated a differential binding of RecO and RecG to SSB in DNA replication was used to establish a RecO-dependent pathway of replication fork repair by abolishing a RecG-dependent replication fork repair. We also show that, RecG and RecO could randomly participate in DNA replication repair in the absence of a functional SSB, which may be responsible for the generation of DNA double strand breaks in an ssb-113 mutant in Escherichia coli.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Karen Suárez-Larios ◽  
Ana-María Salazar-Martínez ◽  
Regina Montero-Montoya

A study was realized to ascertain whether eight selected pesticides would induce double strand breaks (DSB) in lymphocyte cultures and whether this damage would induce greater levels of proteins Rad51 participating in homologous recombination or of p-Ku80 participating in nonhomologous end joining. Only five pesticides were found to induce DSB of which only glyphosate and paraoxon induced a significant increase of p-Ku80 protein, indicating that nonhomologous end joining recombinational DNA repair system would be activated. The type of gamma-H2AX foci observed was comparable to that induced by etoposide at similar concentrations. These results are of importance since these effects occurred at low concentrations in the micromolar range, in acute treatments to the cells. Effects over longer exposures in actual environmental settings are expected to produce cumulative damage if repeated events of recombination take place over time.


Sign in / Sign up

Export Citation Format

Share Document