scholarly journals Daily soil carbon dioxide flux under different tillage conditions

2019 ◽  
pp. 141-144
Author(s):  
Ágnes Törő ◽  
Péter Ragán ◽  
Tamás Rátonyi ◽  
Károly Kith ◽  
Endre Harsányi

Over the last few years, warming of the atmospheric layer near Earth's surface is increasingly experienced and researchers have also established that concentration of numerous greenhouse gases have risen over the past two centuries value. Change is basically a legitimate process - considering atmospheric concentration as well - but the change experienced during the past centuries could not have become this critical without the contribution of human activity. Due to the nature of the greenhouse effect, the result of a very fragile, complex process is experienced currently on Earth, which can be significantly unbalanced even by a slight change. Carbon dioxide emitted from the soil is involved in the global cycle and has an impact on the greenhouse effect. The rise in soil respiration may result in the further intensification of warming. In the scope of the present study, it was examined how carbon dioxide emissions of the soil evolve over a day. The results have been established based on the comparison of the effects of different parts of the day, tillage methods and irrigation.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrin Attermeyer ◽  
Joan Pere Casas-Ruiz ◽  
Thomas Fuss ◽  
Ada Pastor ◽  
Sophie Cauvy-Fraunié ◽  
...  

AbstractGlobally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1 mmol m−2 h−1 at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams.


2015 ◽  
Vol 10 (6) ◽  
pp. 450-457 ◽  
Author(s):  
Pivotto Bortolotto Rafael ◽  
Jorge Carneiro Amado Telmo ◽  
Dalla Nora Douglas ◽  
Keller Cristiano ◽  
Roberti Debora ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
Roger J. Francey

Environmental Context.Excessive levels of carbon dioxide are accumulating in the atmosphere, principally from burning fossil fuels. The gas is linked to the enhanced greenhouse effect and climate change, and is thus monitored carefully, along with other trace gases that reflect human activity.The rate of growth of carbon dioxide has increased gradually over the past century, and more rapidly in the last decade. Teasing out fossil emissions from changes due to wildfires and to natural exchange with plants and oceans guide global attempts in reducing emissions.


2015 ◽  
Vol 96 ◽  
pp. 288-295 ◽  
Author(s):  
Jun Wang ◽  
Quan-Quan Liu ◽  
Rong-Rong Chen ◽  
Wen-Zhao Liu ◽  
Upendra M. Sainju

Sign in / Sign up

Export Citation Format

Share Document