scholarly journals Elaboração de Protocolo de Acompanhamento Farmacoterapêutico para Portadores de Hanseníase / Preparation of a Pharmacotherapeutic Monitoring Protocol for Leprosy Patients

2021 ◽  
Vol 7 (12) ◽  
pp. 115439-115459
Author(s):  
Daniela da Silva Carneiro ◽  
João Vitor Amorim Araujo ◽  
Joelma de Albuquerque Bezerra ◽  
Marcelo Augusto Mota Brito
2009 ◽  
Author(s):  
Dan Isaak ◽  
Bruce Rieman ◽  
Dona Horan

2010 ◽  
Author(s):  
Joel M. Diamond ◽  
Robert N. Knight ◽  
Lauren B. Wilson ◽  
Kimberly A. Hersey ◽  
Ben Sutter

2018 ◽  
Vol 18 (18) ◽  
pp. 1550-1558
Author(s):  
Muhammad Aamir ◽  
Asma Sadaf ◽  
Sehroon Khan ◽  
Shagufta Perveen ◽  
Afsar Khan

Background: Many of the tropical diseases are neglected by the researchers and medicinal companies due to lack of profit and other interests. The Drugs for Neglected Diseases initiative (DNDi) is established to overcome the problems associated with these neglected diseases. According to a report published by the WHO, leprosy (Hansen's disease) is also a neglected infectious disease. Methods: A negligible amount of advancements has been made in last few decades which includes the tools of diagnosis, causes, treatment, and genetic studies of the bacterium (Mycobacterium leprae) that causes leprosy. The diagnosis of leprosy at earlier stages is important for its effective treatment. Recent studies on vitamin D and its receptors make leprosy diagnosis easier at earlier stages. Skin biopsies and qPCR are the other tools to identify the disease at its initial stages. Results: Until now a specific drug for the treatment of leprosy is not available, therefore, Multi-Drug Therapy (MDT) is used, which is hazardous to health. Besides Mycobacterium leprae, recently a new bacterium Mycobacterium lepromatosis was also identified as a cause of leprosy. During the last few years the genetic studies of Mycobacterium leprae, the role of vitamin D and vitamin D receptors (VDR), and the skin biopsies made the treatment and diagnosis of leprosy easier at early stages. The studies of micro RNAs (miRNAs) made it easy to differentiate leprosy from other diseases especially from tuberculosis. Conclusion: Leprosy can be distinguished from sarcoidosis by quantitative study of reticulin fibers present in skin. The treatment used until now for leprosy is multi-drug treatment. The complete genome identification of Mycobacterium leprae makes the research easy to develop target specified drugs for leprosy. Rifampicin, identified as a potent drug, along with other drugs in uniform multi-drug treatment, has a significant effect when given to leprosy patients at initial stages. These are effective treatments but a specific drug for leprosy is still needed to be identified. The current review highlights the use of modern methods for the identification of leprosy at its earlier stages and the effective use of drugs alone as well as in combination.


2021 ◽  
pp. 089719002110212
Author(s):  
Kalynn A. Northam ◽  
Bobbie Nguyen ◽  
Sheh-Li Chen ◽  
Edward Sredzienski ◽  
Anthony Charles

Background: Anticoagulation monitoring practices vary during extracorporeal membrane oxygenation (ECMO). The Extracorporeal Life Support Organization describes that a multimodal approach is needed to overcome assay limitations and minimize complications. Objective: Compare activated clotting time (ACT) versus multimodal approach (activated partial thromboplastin time (aPTT)/anti-factor Xa) for unfractionated heparin (UFH) monitoring in adult ECMO patients. Methods: We conducted a single-center retrospective pre- (ACT) versus post-implementation (multimodal approach) study. The incidence of major bleeding and thrombosis, blood product and antithrombin III (ATIII) administration, and UFH infusion rates were compared. Results: Incidence of major bleeding (69.2% versus 62.2%, p = 0.345) and thrombosis (23% versus 14.9%, p = 0.369) was similar between groups. Median number of ATIII doses was reduced in the multimodal group (1.0 [IQR 0.0-2.0] versus 0.0 [0.0 -1.0], p = 0.007). The median UFH infusion rate was higher in the ACT group, but not significant (16.9 [IQR 9.6-22.4] versus 13 [IQR 9.6-15.4] units/kg/hr, p = 0.063). Fewer UFH infusion rate changes occurred prior to steady state in the multimodal group (0.9 [IQR 0.3 -1.7] versus 0.1 [IQR 0.0-0.2], p < 0.001). Conclusion: The incidence of major bleeding and thrombosis was similar between groups. Our multimodal monitoring protocol standardized UFH infusion administration and reduced ATIII administration.


2021 ◽  
pp. 004947552199849
Author(s):  
Prakriti Shukla ◽  
Kiran Preet Malhotra ◽  
Parul Verma ◽  
Swastika Suvirya ◽  
Abir Saraswat ◽  
...  

Non-neuropathic ulcers in leprosy patients are infrequently seen, and atypical presentations are prone to misdiagnosis. We evaluated diagnosed cases of leprosy between January 2017 and January 2020 for the presence of cutaneous ulceration, Ridley–Jopling subtype of leprosy, reactions and histologic features of these ulcerations. Treatment was given as WHO recommended multi-bacillary multi-drug therapy. We found 17/386 leprosy patients with non-neuropathic ulcers. We describe three causes – spontaneous cutaneous ulceration in lepromatous leprosy (one nodular and one diffuse), lepra reactions (five patients with type 1; nine with type 2, further categorised into ulcerated Sweet syndrome-like who also had pseudoepitheliomatous hyperplasia, pustulo-necrotic and necrotic erythema nodosum leprosum) and Lucio phenomenon (one patient). Our series draws attention towards the different faces of non-neuropathic ulcers in leprosy, including some atypical and novel presentations.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcelo dos Santos Barbosa ◽  
Iara Beatriz Andrade de Sousa ◽  
Simone Simionatto ◽  
Sibele Borsuk ◽  
Silvana Beutinger Marchioro

AbstractCurrent prevention methods for the transmission of Mycobacterium leprae, the causative agent of leprosy, are inadequate as suggested by the rate of new leprosy cases reported. Simple large-scale detection methods for M. leprae infection are crucial for early detection of leprosy and disease control. The present study investigates the production and seroreactivity of a recombinant polypeptide composed of various M. leprae protein epitopes. The structural and physicochemical parameters of this construction were assessed using in silico tools. Parameters like subcellular localization, presence of signal peptide, primary, secondary, and tertiary structures, and 3D model were ascertained using several bioinformatics tools. The resultant purified recombinant polypeptide, designated rMLP15, is composed of 15 peptides from six selected M. leprae proteins (ML1358, ML2055, ML0885, ML1811, ML1812, and ML1214) that induce T cell reactivity in leprosy patients from different hyperendemic regions. Using rMLP15 as the antigen, sera from 24 positive patients and 14 healthy controls were evaluated for reactivity via ELISA. ELISA-rMLP15 was able to diagnose 79.17% of leprosy patients with a specificity of 92.86%. rMLP15 was also able to detect the multibacillary and paucibacillary patients in the same proportions, a desirable addition in the leprosy diagnosis. These results summarily indicate the utility of the recombinant protein rMLP15 in the diagnosis of leprosy and the future development of a viable screening test.


Sign in / Sign up

Export Citation Format

Share Document