scholarly journals Factors Influencing Alpha-toxin Production by Clostridium perfringens

1963 ◽  
Vol 18 (8) ◽  
pp. 344-347 ◽  
Author(s):  
Akio YAMAMOTO ◽  
Masako TSUKAMOTO ◽  
Ryosuke MURATA
1999 ◽  
Vol 67 (9) ◽  
pp. 4902-4907 ◽  
Author(s):  
Darren M. Ellemor ◽  
Rebecca N. Baird ◽  
Milena M. Awad ◽  
Richard L. Boyd ◽  
Julian I. Rood ◽  
...  

ABSTRACT A hallmark of gas gangrene (clostridial myonecrosis) pathology is a paucity of leukocytes infiltrating the necrotic tissue. The cause of this paucity most likely relates to the observation of leukocyte aggregates at the border of the area of tissue necrosis, often within the microvasculature itself. Infecting mice with genetically manipulated strains of Clostridium perfringens type A (deficient in either alpha-toxin or theta-toxin production) resulted in significantly reduced leukocyte aggregation when alpha-toxin was absent and complete abrogation of leukocyte aggregation when theta-toxin was absent. Thus, both alpha-toxin and theta-toxin are necessary for the characteristic vascular leukostasis observed in clostridial myonecrosis.


1965 ◽  
Vol 18 (4) ◽  
pp. 189-202 ◽  
Author(s):  
RYOSUKE MURATA ◽  
AKIO YAMAMOTO ◽  
SACHIKO SODA ◽  
AKIHARU ITO

2002 ◽  
Vol 184 (7) ◽  
pp. 2034-2038 ◽  
Author(s):  
Milena M. Awad ◽  
Julian I. Rood

ABSTRACT The pathogenesis of Clostridium perfringens-mediated gas gangrene or clostridial myonecrosis involves the extracellular toxins alpha-toxin and perfringolysin O. Previous studies (T. Shimizu, A. Okabe, J. Minami, and H. Hayashi, Infect. Immun. 59:137-142, 1991) carried out with Escherichia coli suggested that the perfringolysin O structural gene, pfoA, was positively regulated by the product of the upstream pfoR gene. In an attempt to confirm this hypothesis in C. perfringens, a pfoR-pfoA deletion mutant was complemented with isogenic pfoA+ shuttle plasmids that varied only in their ability to encode an intact pfoR gene. No difference in the ability to produce perfringolysin O was observed for C. perfringens strains carrying these plasmids. In addition, chromosomal pfoR mutants were constructed by homologous recombination in C. perfringens. Again no difference in perfringolysin O activity was observed. Since it was not possible to alter perfringolysin O expression by mutation of pfoR, it was concluded that the pfoR gene product is unlikely to have a role in the regulation of pfoA expression in C. perfringens.


2001 ◽  
Vol 45 (3) ◽  
pp. 724 ◽  
Author(s):  
B. T. Heier ◽  
A. Lovland ◽  
K. B. Soleim ◽  
M. Kaldhusal ◽  
J. Jarp

2013 ◽  
Vol 44 (1) ◽  
pp. 45 ◽  
Author(s):  
Stefanie Verherstraeten ◽  
Evy Goossens ◽  
Bonnie Valgaeren ◽  
Bart Pardon ◽  
Leen Timbermont ◽  
...  

2013 ◽  
Vol 79 (24) ◽  
pp. 7654-7661 ◽  
Author(s):  
Andrée F. Maheux ◽  
Ève Bérubé ◽  
Dominique K. Boudreau ◽  
Romain Villéger ◽  
Philippe Cantin ◽  
...  

ABSTRACTWe first determined the analytical specificity and ubiquity (i.e., the ability to detect all or most strains) of aClostridium perfringens-specific real-time PCR (rtPCR) assay based on thecpagene (cpartPCR) by using a bacterial strain panel composed ofC. perfringensand non-C. perfringens Clostridiumstrains. All non-C. perfringens Clostridiumstrains tested negative, whereas allC. perfringensstrains tested positive with thecpartPCR, for an analytical specificity and ubiquity of 100%. ThecpartPCR assay was then used to confirm the identity of 116 putativeC. perfringensisolates recovered after filtration of water samples and culture on mCP agar. Colonies presenting discordant results between the phenotype on mCP agar andcpartPCR were identified by sequencing the 16S rRNA andcpagenes. Four mCP−/rtPCR+colonies were identified asC. perfringens, whereas 3 mCP+/rtPCR−colonies were identified as non-C. perfringens. ThecpartPCR was negative with all 51 non-C. perfringensstrains and positive with 64 of 65C. perfringensstrains. Finally, we compared mCP agar and a CRENAME (concentration andrecovery of microbial particles,extraction ofnucleicacids, andmolecularenrichment) procedure pluscpartPCR (CRENAME +cpartPCR) for their abilities to detectC. perfringensspores in drinking water. CRENAME +cpartPCR detected as few as oneC. perfringensCFU per 100 ml of drinking water sample in less than 5 h, whereas mCP agar took at least 25 h to deliver results. CRENAME +cpartPCR also allows the simultaneous and sensitive detection ofEscherichia coliandC. perfringensfrom the same potable water sample. In itself, it could be used to assess the public health risk posed by drinking water potentially contaminated with pathogens more resistant to disinfection.


Sign in / Sign up

Export Citation Format

Share Document