scholarly journals Methods and information systems for identification of sources of radioactive air pollution by inverse modeling

2021 ◽  
Vol 4 ◽  
pp. 78-90
Author(s):  
R.O. Synkevych ◽  

The paper reviews the methods for identifying an unknown source of pollution by inverse mod-eling and information systems for air pollution forecasting and analysis. Several different for-eign and Ukrainian air pollution forecasting systems, such as the European Union's Nuclear Emergency Response System RODOS, have been developed on the basis of atmospheric transport models. However, the key data that determine the quality of forecasting in such sys-tems are the characteristics of the emission sources. In the case of detection of pollution from an unknown emission source, there should be performed inverse simulation. The use of the RODOS system, as well as other existing forecasting systems for such a task is possible but it requires multiple manual start of calculations of atmospheric transfer models in the reverse mode. Presented in the paper results of the application of inverse modeling methods during ra-diation incidents of the last decade demonstrate that modern methods of inverse modeling are sufficiently developed to set the task of automating inverse modeling in information systems for air pollution analysis and forecasting. Even though these methods not always can exactly identify the source of emissions due to the lack of measurements and poor conditioning of the inverse atmospheric transport problem, their application always leads to a significant reduction (by an order of magnitude or more) in the search for unknown sources compared to the detec-tion of pollutants. At present, in the existing forecasting systems the methods of inverse model-ing are only partially automated, namely for the case of known location and unknown emissions of the source of pollution. Therefore, this paper proposes the architecture of the future system for identifying unknown sources of emissions by inverse modeling.

2021 ◽  
pp. 118502
Author(s):  
Tavera Busso Iván ◽  
Rodríguez Núñez Martín ◽  
Amarillo Ana Carolina ◽  
Mettan Fabricio ◽  
Carreras Hebe Alejandra

2014 ◽  
Vol 5 (4) ◽  
pp. 696-708 ◽  
Author(s):  
Madhavi Anushka Elangasinghe ◽  
Naresh Singhal ◽  
Kim N. Dirks ◽  
Jennifer A. Salmond

2021 ◽  
Vol 8 (5) ◽  
pp. 987
Author(s):  
Novi Koesoemaningroem ◽  
Endroyono Endroyono ◽  
Supeno Mardi Susiki Nugroho

<p>Peramalan pencemaran udara yang  akurat  diperlukan untuk mengurangi dampak pencemaran udara. Peramalan yang belum akurat akan berdampak kurang efektifnya tindakan yang dilakukan untuk mengantisipasi dampak pencemaran udara. Sehingga diperlukan sebuah pendekatan yang dapat mengetahui keakuratan plot data hasil peramalan. Penelitian ini dilakukan dengan tujuan melakukan peramalan pencemaran udara berdasarkan parameter PM<sub>10</sub>, NO<sub>2</sub>, CO, SO<sub>2</sub>, dan O<sub>3</sub>dengan metode DSARIMA. Data dalam penelitian ini sebanyak 8.760 data yang berasal dari Dinas Lingkungan Hidup Kota Surabaya. Berdasarkan hasil peramalan selama 168 jam kadar parameter PM<sub>10</sub>, NO<sub>2</sub>, SO<sub>2</sub> dan O<sub>3</sub> cenderung  menurun. Hasil peramalan selama 168 jam dengan menggunakan DSARIMA memberikan hasil peramalan yang nilainya mendekati data aktual terbukti dari polanya yang sesuai atau mirip dengan grafik plot data aktual dengan hasil ramalan. Dengan pendekatan PEB, selisih antara data aktual dan data ramalan kecil dan plot grafik PEB mengikuti plot grafik di data aktual, sehingga dapat dikatakan bahwa model sudah sesuai. Hasil akurasi terbaik yang dihasilkan adalah model DSARIMA dengan RMSE terkecil 0,59 didapatkan dari parameter CO yaitu ARIMA(0,1,[1,2,3])(0,1,1)<sup>24</sup>(0,1,1)<sup>168</sup>.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Judul2"><em>Accurate air pollution forecasting is needed to reduce the impact of air pollution. Inaccurate forecasting will result in less effective actions taken to anticipate the impact of air pollution. So we need an approach that can determine the accuracy of the forecast data plot. This research was conducted with the aim of forecasting air pollution based on the PM<sub>10</sub>, NO<sub>2</sub>, CO, <sub>SO2</sub>, and O<sub>3</sub> parameters using the DSARIMA method. The data in this study were 8.760 data from the Surabaya City Environmental Service. Based on the results of forecasting for 168 hours, the levels of PM<sub>10</sub>, NO<sub>2, </sub>SO<sub>2</sub>, and O<sub>3</sub> parameters tend to decrease. Forecasting results for 168 hours using DSARIMA provide forecasting results whose values are close to the actual data as evidenced by the pattern that matches or is similar to the actual data plot graph with the forecast results. With the PEB approach, the difference between the actual data and the forecast data is small and the PEB graph plot follows the graph plot in the actual data, so it can be said that the model is appropriate. The best accuracy result is DSARIMA with the smallest RMSE 0,59 obtained from the CO parameter, namely </em>ARIMA(0,1,[1,2,3])(0,1,1)<sup>24</sup>(0,1,1)<sup>168</sup>.</p><p> </p><p> </p>


2010 ◽  
Vol 22 (1) ◽  
pp. 98-111
Author(s):  
Panal Sitorus

Levels of air pollution caused by motor vehicles in the big cities in Indonesia is quite high, about 60%was alarming and impact on public health. The main problem is why should conduct an effectivetesting of emissions vehicles in Indonesia? Tire aim of study is to provide recommendations haw toreduce emissions levels, the object of studtj is the implementation of emissions testing, characteristicsand facilities. The method used is to compare with the threshold determined btJ the data from variousofficial. sources.Tire success of reducing emissions levels is in the supervision of testing and legal action in its testingsystem.Need to reform its institutions emissions testing, technician certification, the appointment of calibrationinstitution, improving information systems, certification, and socialization to the communihJcontinuously.Keyword: Emissions and public health.


Sign in / Sign up

Export Citation Format

Share Document