scholarly journals Quality Assurance of UMLS Semantic Type Assignments Using SNOMED CT Hierarchies

2016 ◽  
Vol 55 (02) ◽  
pp. 158-165 ◽  
Author(s):  
Y. Chen ◽  
Z. He ◽  
M. Halper ◽  
L. Chen ◽  
H. Gu

SummaryBackground: The Unified Medical Language System (UMLS) is one of the largest biomedical terminological systems, with over 2.5 million concepts in its Metathesaurus repository. The UMLS’s Semantic Network (SN) with its collection of 133 high-level semantic types serves as an abstraction layer on top of the Metathesaurus. In particular, the SN elaborates an aspect of the Metathesaurus’s concepts via the assignment of one or more types to each concept. Due to the scope and complexity of the Metathesaurus, errors are all but inevitable in this semantic-type assignment process.Objectives: To develop a semi-automated methodology to help assure the quality of semantic-type assignments within the UMLS.Methods: The methodology uses a cross- validation strategy involving SNOMED CT’s hierarchies in combination with UMLS se -mantic types. Semantically uniform, disjoint concept groups are generated programmatically by partitioning the collection of all concepts in the same SNOMED CT hierarchy according to their respective semantic-type assignments in the UMLS. Domain experts are then called upon to review the concepts in any group having a small number of concepts. It is our hypothesis that a semantic-type assignment combination applicable only to a very small number of concepts in a SNOMED CT hierarchy is an indicator of potential problems.Results: The methodology was applied to the UMLS 2013AA release along with the SNOMED CT from January 2013. An overall error rate of 33% was found for concepts proposed by the quality-assurance methodology. Supporting our hypothesis, that number was four times higher than the error rate found in control samples.Conclusion: The results show that the quality-assurance methodology can aid in effective and efficient identification of UMLS semantic-type assignment errors.

Author(s):  
Zhe He ◽  
C. Paul Morrey ◽  
Yehoshua Perl ◽  
Gai Elhanan ◽  
Ling Chen ◽  
...  

Background: The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a “combination semantic type” is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller.Objective: The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. Methods: In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 “small ISTs” in the 2013AA version of the UMLS to finalize the longitudinal study. Results: Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden.Conclusions: It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented.


2018 ◽  
Vol 57 (01/02) ◽  
pp. 43-53 ◽  
Author(s):  
Zhe He ◽  
Duo Wei ◽  
Gai Elhanan ◽  
Yan Chen ◽  
Huanying Gu

Summary Background: The UMLS assigns semantic types to all its integrated concepts. The semantic types are widely used in various natural language processing tasks in the biomedical domain, such as named entity recognition, semantic disambiguation, and semantic annotation. Due to the size of the UMLS, erroneous semantic type assignments are hard to detect. It is imperative to devise automated techniques to identify errors and inconsistencies in semantic type assignments. Objectives: Designing a methodology to perform programmatic checks to detect semantic type assignment errors for UMLS concepts with one or more SNOMED CT terms and evaluating concepts in a selected set of SNOMED CT hierarchies to verify our hypothesis that UMLS semantic type assignment errors may exist in concepts residing in semantically inconsistent groups. Methods: Our methodology is a four-stage process. 1) partitioning concepts in a SNOMED CT hierarchy into semantically uniform groups based on their assigned semantic tags; 2) partitioning concepts in each group from 1) into the disjoint sub-groups based on their semantic type assignments; 3) mapping all SNOMED CT semantic tags into one or more semantic types in the UMLS; 4) identifying semantically inconsistent groups that have inconsistent assignments between semantic tags and semantic types according to the mapping from 3) and providing concepts in such groups to the domain experts for reviewing. Results: We applied our method on the UMLS 2013AA release. Concepts of the semantically inconsistent groups in the PHYSICAL FORCE and RECORD ARTIFACT hierarchies have error rates 33% and 62.5% respectively, which are greatly larger than error rates 0.6% and 1% in semantically consistent groups of the two hierarchies. Conclusion: Concepts in semantically in - consistent groups are more likely to contain semantic type assignment errors. Our methodology can make auditing more efficient by limiting auditing resources on concepts of semantically inconsistent groups.


2020 ◽  
Vol 20 (S10) ◽  
Author(s):  
Ankur Agrawal ◽  
Licong Cui

AbstractBiological and biomedical ontologies and terminologies are used to organize and store various domain-specific knowledge to provide standardization of terminology usage and to improve interoperability. The growing number of such ontologies and terminologies and their increasing adoption in clinical, research and healthcare settings call for effective and efficient quality assurance and semantic enrichment techniques of these ontologies and terminologies. In this editorial, we provide an introductory summary of nine articles included in this supplement issue for quality assurance and enrichment of biological and biomedical ontologies and terminologies. The articles cover a range of standards including SNOMED CT, National Cancer Institute Thesaurus, Unified Medical Language System, North American Association of Central Cancer Registries and OBO Foundry Ontologies.


2020 ◽  
Vol 27 (10) ◽  
pp. 1568-1575 ◽  
Author(s):  
Fengbo Zheng ◽  
Jay Shi ◽  
Yuntao Yang ◽  
W Jim Zheng ◽  
Licong Cui

Abstract Objective The Unified Medical Language System (UMLS) integrates various source terminologies to support interoperability between biomedical information systems. In this article, we introduce a novel transformation-based auditing method that leverages the UMLS knowledge to systematically identify missing hierarchical IS-A relations in the source terminologies. Materials and Methods Given a concept name in the UMLS, we first identify its base and secondary noun chunks. For each identified noun chunk, we generate replacement candidates that are more general than the noun chunk. Then, we replace the noun chunks with their replacement candidates to generate new potential concept names that may serve as supertypes of the original concept. If a newly generated name is an existing concept name in the same source terminology with the original concept, then a potentially missing IS-A relation between the original and the new concept is identified. Results Applying our transformation-based method to English-language concept names in the UMLS (2019AB release), a total of 39 359 potentially missing IS-A relations were detected in 13 source terminologies. Domain experts evaluated a random sample of 200 potentially missing IS-A relations identified in the SNOMED CT (U.S. edition) and 100 in Gene Ontology. A total of 173 of 200 and 63 of 100 potentially missing IS-A relations were confirmed by domain experts, indicating that our method achieved a precision of 86.5% and 63% for the SNOMED CT and Gene Ontology, respectively. Conclusions Our results showed that our transformation-based method is effective in identifying missing IS-A relations in the UMLS source terminologies.


2003 ◽  
Vol 4 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Alexa T. McCray

At the US National Library of Medicine we have developed the Unified Medical Language System (UMLS), whose goal it is to provide integrated access to a large number of biomedical resources by unifying the vocabularies that are used to access those resources. The UMLS currently interrelates some 60 controlled vocabularies in the biomedical domain. The UMLS coverage is quite extensive, including not only many concepts in clinical medicine, but also a large number of concepts applicable to the broad domain of the life sciences. In order to provide an overarching conceptual framework for all UMLS concepts, we developed an upper-level ontology, called the UMLS semantic network. The semantic network, through its 134 semantic types, provides a consistent categorization of all concepts represented in the UMLS. The 54 links between the semantic types provide the structure for the network and represent important relationships in the biomedical domain. Because of the growing number of information resources that contain genetic information, the UMLS coverage in this area is being expanded. We recently integrated the taxonomy of organisms developed by the NLM's National Center for Biotechnology Information, and we are currently working together with the developers of the Gene Ontology to integrate this resource, as well. As additional, standard, ontologies become publicly available, we expect to integrate these into the UMLS construct.


2020 ◽  
Vol 27 (10) ◽  
pp. 1510-1519
Author(s):  
Dongfang Xu ◽  
Manoj Gopale ◽  
Jiacheng Zhang ◽  
Kris Brown ◽  
Edmon Begoli ◽  
...  

Abstract Objective Concept normalization, the task of linking phrases in text to concepts in an ontology, is useful for many downstream tasks including relation extraction, information retrieval, etc. We present a generate-and-rank concept normalization system based on our participation in the 2019 National NLP Clinical Challenges Shared Task Track 3 Concept Normalization. Materials and Methods The shared task provided 13 609 concept mentions drawn from 100 discharge summaries. We first design a sieve-based system that uses Lucene indices over the training data, Unified Medical Language System (UMLS) preferred terms, and UMLS synonyms to generate a list of possible concepts for each mention. We then design a listwise classifier based on the BERT (Bidirectional Encoder Representations from Transformers) neural network to rank the candidate concepts, integrating UMLS semantic types through a regularizer. Results Our generate-and-rank system was third of 33 in the competition, outperforming the candidate generator alone (81.66% vs 79.44%) and the previous state of the art (76.35%). During postevaluation, the model’s accuracy was increased to 83.56% via improvements to how training data are generated from UMLS and incorporation of our UMLS semantic type regularizer. Discussion Analysis of the model shows that prioritizing UMLS preferred terms yields better performance, that the UMLS semantic type regularizer results in qualitatively better concept predictions, and that the model performs well even on concepts not seen during training. Conclusions Our generate-and-rank framework for UMLS concept normalization integrates key UMLS features like preferred terms and semantic types with a neural network–based ranking model to accurately link phrases in text to UMLS concepts.


2015 ◽  
Vol 22 (3) ◽  
pp. 507-518 ◽  
Author(s):  
Christopher Ochs ◽  
James Geller ◽  
Yehoshua Perl ◽  
Yan Chen ◽  
Junchuan Xu ◽  
...  

Abstract Objective Standards terminologies may be large and complex, making their quality assurance challenging. Some terminology quality assurance (TQA) methodologies are based on abstraction networks (AbNs), compact terminology summaries. We have tested AbNs and the performance of related TQA methodologies on small terminology hierarchies. However, some standards terminologies, for example, SNOMED, are composed of very large hierarchies. Scaling AbN TQA techniques to such hierarchies poses a significant challenge. We present a scalable subject-based approach for AbN TQA. Methods An innovative technique is presented for scaling TQA by creating a new kind of subject-based AbN called a subtaxonomy for large hierarchies. New hypotheses about concentrations of erroneous concepts within the AbN are introduced to guide scalable TQA. Results We test the TQA methodology for a subject-based subtaxonomy for the Bleeding subhierarchy in SNOMED's large Clinical finding hierarchy. To test the error concentration hypotheses, three domain experts reviewed a sample of 300 concepts. A consensus-based evaluation identified 87 erroneous concepts. The subtaxonomy-based TQA methodology was shown to uncover statistically significantly more erroneous concepts when compared to a control sample. Discussion The scalability of TQA methodologies is a challenge for large standards systems like SNOMED. We demonstrated innovative subject-based TQA techniques by identifying groups of concepts with a higher likelihood of having errors within the subtaxonomy. Scalability is achieved by reviewing a large hierarchy by subject. Conclusions An innovative methodology for scaling the derivation of AbNs and a TQA methodology was shown to perform successfully for the largest hierarchy of SNOMED.


2017 ◽  
Vol 24 (4) ◽  
pp. 788-798 ◽  
Author(s):  
Licong Cui ◽  
Wei Zhu ◽  
Shiqiang Tao ◽  
James T Case ◽  
Olivier Bodenreider ◽  
...  

Abstract Objective: Quality assurance of large ontological systems such as SNOMED CT is an indispensable part of the terminology management lifecycle. We introduce a hybrid structural-lexical method for scalable and systematic discovery of missing hierarchical relations and concepts in SNOMED CT. Material and Methods: All non-lattice subgraphs (the structural part) in SNOMED CT are exhaustively extracted using a scalable MapReduce algorithm. Four lexical patterns (the lexical part) are identified among the extracted non-lattice subgraphs. Non-lattice subgraphs exhibiting such lexical patterns are often indicative of missing hierarchical relations or concepts. Each lexical pattern is associated with a potential specific type of error. Results: Applying the structural-lexical method to SNOMED CT (September 2015 US edition), we found 6801 non-lattice subgraphs that matched these lexical patterns, of which 2046 were amenable to visual inspection. We evaluated a random sample of 100 small subgraphs, of which 59 were reviewed in detail by domain experts. All the subgraphs reviewed contained errors confirmed by the experts. The most frequent type of error was missing is-a relations due to incomplete or inconsistent modeling of the concepts. Conclusions: Our hybrid structural-lexical method is innovative and proved effective not only in detecting errors in SNOMED CT, but also in suggesting remediation for these errors.


Author(s):  
Qian Zhu ◽  
Dac-Trung Nguyen ◽  
Eric Sid ◽  
Anne Pariser

Abstract Objective In this study, we aimed to evaluate the capability of the Unified Medical Language System (UMLS) as one data standard to support data normalization and harmonization of datasets that have been developed for rare diseases. Through analysis of data mappings between multiple rare disease resources and the UMLS, we propose suggested extensions of the UMLS that will enable its adoption as a global standard in rare disease. Methods We analyzed data mappings between the UMLS and existing datasets on over 7,000 rare diseases that were retrieved from four publicly accessible resources: Genetic And Rare Diseases Information Center (GARD), Orphanet, Online Mendelian Inheritance in Men (OMIM), and the Monarch Disease Ontology (MONDO). Two types of disease mappings were assessed, (1) curated mappings extracted from those four resources; and (2) established mappings generated by querying the rare disease-based integrative knowledge graph developed in the previous study. Results We found that 100% of OMIM concepts, and over 50% of concepts from GARD, MONDO, and Orphanet were normalized by the UMLS and accurately categorized into the appropriate UMLS semantic groups. We analyzed 58,636 UMLS mappings, which resulted in 3,876 UMLS concepts across these resources. Manual evaluation of a random set of 500 UMLS mappings demonstrated a high level of accuracy (99%) of developing those mappings, which consisted of 414 mappings of synonyms (82.8%), 76 are subtypes (15.2%), and five are siblings (1%). Conclusion The mapping results illustrated in this study that the UMLS was able to accurately represent rare disease concepts, and their associated information, such as genes and phenotypes, and can effectively be used to support data harmonization across existing resources developed on collecting rare disease data. We recommend the adoption of the UMLS as a data standard for rare disease to enable the existing rare disease datasets to support future applications in a clinical and community settings.


2000 ◽  
Vol 22 (6) ◽  
pp. 199-202 ◽  
Author(s):  
Ifte Mahmud ◽  
David Kim

In an environment where cost, timeliness, and quality drives the business, it is essential to look for answers in technology where these challenges can be met. In the Novartis Pharmaceutical Quality Assurance Department, automation and robotics have become just the tools to meet these challenges. Although automation is a relatively new concept in our department, we have fully embraced it within just a few years. As our company went through a merger, there was a significant reduction in the workforce within the Quality Assurance Department through voluntary and involuntary separations. However the workload remained constant or in some cases actually increased. So even with reduction in laboratory personnel, we were challenged internally and from the headquarters in Basle to improve productivity while maintaining integrity in quality testing. Benchmark studies indicated the Suffern site to be the choice manufacturing site above other facilities. This is attributed to the Suffern facility employees' commitment to reduce cycle time, improve efficiency, and maintain high level of regulatory compliance. One of the stronger contributing factors was automation technology in the laboratoriess, and this technology will continue to help the site's status in the future. The Automation Group was originally formed about 2 years ago to meet the demands of high quality assurance testing throughput needs and to bring our testing group up to standard with the industry. Automation began with only two people in the group and now we have three people who are the next generation automation scientists. Even with such a small staff,we have made great strides in laboratory automation as we have worked extensively with each piece of equipment brought in. The implementation process of each project was often difficult because the second generation automation group came from the laboratory and without much automation experience. However, with the involvement from the users at ‘get-go’, we were able to successfully bring in many automation technologies. Our first experience with automation was SFA/SDAS, and then Zymark TPWII followed by Zymark Multi-dose. The future of product testing lies in automation, and we shall continue to explore the possibilities of improving the testing methodologies so that the chemists will be less burdened with repetitive and mundane daily tasks and be more focused on bringing quality into our products.


Sign in / Sign up

Export Citation Format

Share Document