scholarly journals A system dynamics approach for water resources management with focusing on domestic water demand

2020 ◽  
Vol 7 (4) ◽  
pp. 229-235
Author(s):  
Tayebeh Nazarialamdarloo ◽  
Hamzeh Ali Jamali ◽  
Bijan Nazari ◽  
Mohammad Mehdi Emamjomeh ◽  
Hamid Karyab
2019 ◽  
Vol 76 ◽  
pp. 04004 ◽  
Author(s):  
Basyar I. Arijuddin ◽  
Ig. L. Setyawan Purnama ◽  
Emilya Nurjani

Yogyakarta city has a problem of water resources management along with the rapid development in this region. Rainwater harvesting (RWH) can be an alternative choice in urban water resources management. This study aims to determine the best RWH scenario as a sustainable water supply to meet domestic water demand in Yogyakarta City. The method used is the Sustainability Index with 3 parameters including reliability, resilience and vulnerability. Each parameter is a derivative of a water balance simulation of the RWH system using the data range in the period 2006–2015. This study compares the percentage of roof usage in the RWH system and the level of domestic water demand. The results of this study indicate that the RWH scenario by utilizing 50 %–75 % of the roof area can be ideally meet up to 80 % of domestic water needs in Yogyakarta City. RWH scenario with 100 % roof usage can meet all domestic water needs well. This study shows that the RWH system can have a positive impact on the management and sustainability of water resources in Yogyakarta City.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 267-272 ◽  
Author(s):  
A. Angelakis ◽  
E. Diamadopoulos

The basic aim of this paper is to present the existing conditions and problems of water resources management in Greece. Water demand has increased tremendously over the past 30 years. Despite adequate precipitation, water imbalance is often experienced, due to temporal and regional variations of the precipitation, the increased water demand during the summer months and the difficulty of transporting water due to the mountainous terrain. Integration of reclaimed wastewater originating from the wastewater treatment plant effluents into the water resources management is proposed. This plan exhibits the potential for reducing the pollution loads entering sea or inland waters, while at the same time providing water for irrigation.


Author(s):  
Shangming Jiang ◽  
Shaowei Ning ◽  
Xiuqing Cao ◽  
Juliang Jin ◽  
Fan Song ◽  
...  

Due to the importance and complexity of water resources regulations in the pond irrigation systems of the Jiang-Huai hilly regions, a water allocation simulation model for pond irrigation districts based on system simulation theory was developed in this study. To maximize agricultural irrigation benefits while guaranteeing rural domestic water demand, an optimal water resources regulation model for pond irrigation districts and a simulation-based optimal water resources regulation technology system for the pond irrigation system were developed. Using this system, it was determined that the suitable pond coverage rate (pond capacity per unit area) was 2.92 × 105 m3/km2. Suitable water supply and operational rules for adjusting crop planting structure were also developed the water-saving irrigation method and irrigation system. To guarantee rural domestic water demand, the multi-year average total irrigation water deficit of the study area decreased by 4.66 × 104 m3/km2; the average multi-year water deficit ratio decreased from 20.40% to 1.18%; the average multi-year irrigation benefit increased by 1.11 × 105 RMB (16,128$)/km2; and the average multi-year revenue increased by 6.69%. Both the economic and social benefits were significant. The results of this study provide a theoretical basis and technological support for comprehensive pone governance in the Jiang-Huai hilly regions and promote the establishment of a water allocation scheme and irrigation system for pond irrigation districts, which have practical significance and important application value.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1860 ◽  
Author(s):  
Yahua Wang ◽  
Tingting Wan ◽  
Cecilia Tortajada

Water resources management is increasingly important for sustainable economic and social development. A coherent division of the development stages is of primary importance for selecting and implementing related water resource management strategies. Using evolving supply–demand relationships, this paper proposes a framework that considers water development stages to present a series of dynamic relationships between water demand changes and overall economic development. The framework is applied to China to advance the understanding of how demand evolves at different stages of water resources development under specific socioeconomic circumstances, and of strategic choices in general. The case of China explains how water resources management has gradually improved during distinct socioeconomic development stages. It illustrates the varieties and effectiveness of water policies made to adapt to changing demand over the course of socioeconomic development. The framework can be potentially applied to other countries or regions to identify the development stage in order to select proper water management strategies.


Sign in / Sign up

Export Citation Format

Share Document