scholarly journals Petroleum geology and thermal maturity of eastern North Greenland - a new energy research project

1995 ◽  
Vol 165 ◽  
pp. 49-52
Author(s):  
L Stemmerik ◽  
F Dalhoff ◽  
I Nilsson

Petroleum geological studies were initiated in eastern North Greenland in 1993 as part of a regional mapping programme carried out by the Geological Survey of Greenland (Henriksen, 1994, 1995; Stemmerik & Elvebakk, 1994). These activities continued in 1994, and a three-year research programme was initiated to generate data for basin modelling of the Phanerozoic sedimentary basins in the easternmost part of North Greenland. The basin modelling project is supported by the Danish Ministry of Environment and Energy and is a continuation of previous petroleum-related research programmes in the region (Christiansen, 1989; Hakansson & Stemmerik, this report). The aim of the project is to improve the understanding of the subsidence and uplift history of the adjacent shelf basins, and to evaluate the presence of pre-Carboniferous source rocks with adequate maturity in these areas.

2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 14
Author(s):  
Ruben N. Jorritsma

One of the most sophisticated philosophies of science is the methodology of scientific research programmes (MSRP), developed by Imre Lakatos. According to MSRP, scientists are working within so-called research programmes, consisting of a hard core of fixed convictions and a flexible protective belt of auxiliary hypotheses. Anomalies are accommodated by changes to the protective belt that do not affect the hard core. Under MSRP, research programmes are appraised as ‘progressive’ if they successfully predict novel facts but are judged as ‘degenerative’ if they merely offer ad hoc solutions to anomalies. This paper applies these criteria to the evolutionary research programme as it has performed during half a century of ERV research. It describes the early history of the field and the emergence of the endogenization-amplification theory on the origins of retroviral-like sequences. It then discusses various predictions and postdictions that were generated by the programme, regarding orthologous ERVs in different species, the presence of target site duplications and the divergence of long terminal repeats, and appraises how the programme has dealt with data that did not conform to initial expectations. It is concluded that the evolutionary research programme has been progressive with regard to the issues here examined.


2018 ◽  
Vol 58 (1) ◽  
pp. 311 ◽  
Author(s):  
Justin Gorton ◽  
Alison Troup

As part of Queensland Government’s Strategic Resources Exploration Program, in conjunction with the Australian Government’s Exploring for the Future program, a study to improve the subsurface knowledge of Proterozoic basins in northwest Queensland (NWQ) is underway. Proterozoic sedimentary basins are prevalent across central and western Australia. Several of these basins have proven petroleum systems, with the best discoveries to date being in the Greater McArthur Basin, Northern Territory. Recent exploration and appraisal in the Beetaloo Sub-basin of the Greater McArthur Basin has identified large volumes of gas resources contained within unconventional shale reservoirs. In NWQ, the Isa Superbasin and overlying South Nicholson Basin are related in both age and likely deposition to the Greater McArthur Basin. The thick, extensive shale units of the Isa Superbasin are excellent source rocks, while the Mullera Formation in the South Nicholson Basin also has potential but has not been investigated in detail. There are several potential reservoirs within the Proterozoic section and younger units of the overlying Georgina and Carpentaria basins, including clastic and carbonate types. Exploration in the Isa Superbasin identified an estimated 22.1 trillion cubic feet of prospective resources (Armour Energy 2015) in unconventional shale reservoirs of the Lawn Hill Formation and Riversleigh Siltstone. This paper will discuss the stratigraphy, depositional and structural history of these Proterozoic basins and characterise their source and reservoir units using existing and recently acquired geophysical, geochemical, petrographic and petrophysical datasets. From this, several plays or play concepts will be identified and described to help understand the region’s potential for both conventional and unconventional petroleum resources.


1985 ◽  
Vol 125 ◽  
pp. 17-21
Author(s):  
F.G Christiansen ◽  
F Rolle

The project 'Nordolie' was initiated under the Danish Ministry of Energy's Research Programme 1983. The aim of the project is to obtain general knowledge about the source rock geology of central North Greenland. Similar investigations have previously been carried out in eastern North Greenland (Rolle, 1981; Rolle & Wrang, 1981). The main purpose of the project is to study the presence and distribution of potential hydrocarbon source rocks in the region and to evaluate the thermal maturity pattern. Studies of reservoir properties, trapping possibilities, and other aspects of petroleum geology will accordingly have a much lower priority.


Author(s):  
Lars Stemmerik ◽  
Martin Sønderholm ◽  
Jørgen A. Bojesen-Koefoed

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Sønderholm, M., & Bojesen-Koefoed, J. A. (1997). Palaeo-oil field in a Silurian carbonate buildup, Wulff Land, North Greenland: project ‘Resources of the sedimentary basins of North and East Greenland’. Geology of Greenland Survey Bulletin, 176, 24-28. https://doi.org/10.34194/ggub.v176.5056 _______________ The multi-disciplinary research project ‘Resources of the sedimentary basins of North and East Greenland’ was initiated in 1995 with financial support from the Danish Research Councils (Stemmerik et al., 1996). During the 1996 field season, hydrocarbon-related studies within the project were focused on the sedimentary basins of East Greenland (Stemmerik et al., 1997), while field work in the Franklinian Basin of North Greenland from which the observations reported here derive, was limited to two weeks in early August. The project also includes research related to the ore geology of North Greenland, especially focused on the zinc-lead deposit at Citronen Fjord (Fig. 1). This aspect of the project is covered by Langdahl & Elberling (1997) and Kragh et al. (1997). The work on the Franklinian Basin succession was based at Apollo Sø in eastern Wulff Land (Fig. 1), with the main emphasis on sedimentological and sequence stratigraphic studies of carbonates of the Cambrian portion of the Ryder Gletscher Group and the Silurian Washington Land Group. These two carbonate-dominated shelf successions are equivalent in age to the main source rocks for liquid hydrocarbons in the basin, and have been suggested as potential reservoir units in the conceptual reservoir models proposed for the basin (Christiansen, 1989). Earlier investigations in the region have shown that small occurrences of bitumen are widespread in western North Greenland, although typically closely associated with nearby source rocks (Christiansen et al., 1989a). Notable exceptions are the asphalt seepages in southern Warming Land and southern Wulff Land (Fig. 1); in these cases, long distance migration of the order of 75–100 km is envisaged (Christiansen et al., 1989a). During the 1996 field season, a palaeo-oil field was identified in a carbonate buildup in eastern Wulff Land (Victoria Fjord buildup), thus demonstrating for the first time that Silurian buildups have formed large-scale reservoirs for generated hydrocarbons in the geological past.


2003 ◽  
Vol 82 (1) ◽  
pp. 71-90 ◽  
Author(s):  
J.M. Verweij ◽  
H.J. Simmelink ◽  
R.T. Van Balen ◽  
P. David

Abstract2D Basin modelling was used to evaluate the response of source rock maturation, and of petroleum expulsion, migration, accumulation and preservation to the evolution of the southern part of the inverted Broad Fourteens Basin. Modelling results show that the temperature, maturation and petroleum generation history as well as migration characteristics of both the Jurassic oil systems and the Carboniferous gas systems vary over short distances relative to the differences in burial history of the basin. Model results indicate that no major gas accumulations are preserved in the Slochteren Formation along the cross-section at present-day. Gas accumulations are predicted in sandstone-dominated Triassic units in the southern part of the section. Present-day oil accumulations predicted in the Vlieland Sandstone Formation sealed by the Vlieland Claystone Formation (in P9 and Q1 crestal structures) are in accordance with known oil accumulations. Additional oil accumulations are predicted in the sandstone-dominated Middle Werkendam Member, and in sandstones of the Delfland Subgroup.The modelling offers an explanation for the different geochemical compositions of the accumulated oils in the P9 and Q1 areas. Modelling implies, that the oils in the Q1 oil field were sourced by remigrated oils expelled over time, from early mature to mature source rocks of the Posidonia Shale Formation. The biodegraded and water-washed nature of the Q1 oil is explained by the concentrated topography-induced groundwater flow through the Vlieland Sandstone Formation during the Late Cretaceous inversion of the basin. The oils accumulated in the P9 area were sourced from an early mature part of the Posidonia Shale Formation and were probably not affected by water washing and biodegradation because of post-inversion charging of the reservoir.


2018 ◽  
Vol 95 (1) ◽  
pp. 15-33
Author(s):  
Duško Prelević

It is argued in this paper that physicalism is best understood as a research programme, rather than a thesis or an attitude, as some philosophers argue. Given that research programmes connect past, present and future philosophical or scientific activities, physicalists need not decide between current and future physical theories, as it has been required by Hempel’s Dilemma. The author contrasts this proposal with other solutions to Hempel’s Dilemma proposed by currentists, futurists, and those philosophers who claim that physicalism should best be understood as an attitude, arguing that understanding physicalism as a research programme avoids problems that are present in the alternative views, and that it matches well with the standard classifications in the history of philosophy.


2010 ◽  
Vol 130 (6) ◽  
pp. 336-339
Author(s):  
Masayuki YODA ◽  
Kazuto YUKITA ◽  
Yuki OHSHIMA ◽  
Kiyonori BAN ◽  
Maki FUJINAGA

Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Sign in / Sign up

Export Citation Format

Share Document