scholarly journals Synthesis, Characterization and Single Crystal X–ray Crystallography of Nd(III) and Pr(III) Complexes with the Tridentate Schiff Base Ligand N'–(1–(pyridin–2–yl)ethylidene)nicotinohydrazide

Author(s):  
Moussa Faye ◽  
Papa Aly Gaye ◽  
Mouhamadou Moustapha Sow ◽  
Moussa Dieng ◽  
Farba Bouyagui Tamboura ◽  
...  

The use of N'–(1–(pyridin–2–yl)ethylidene)nicotinohydrazide (HL) in lanthanide(III) chemistry has yielded one mononuclear and one dinuclear complexes. The 1:1 Nd(NO3)3.6H2O or Pr(CH3COO)3.6H2O/HL in methanol afforded the complexes [Nd (HL)2(NO3)2(H2O)2].(NO3) (1) and {[Pr(L)(h2–OOCCH3)(H2O)](h1:h2:m–OOCCH3)2[Pr (L)(h2–OOCCH3)(H2O)]} (2). The structures of the complexes were solved by single crystal X–ray crystallography. In the mononuclear complex, the Nd3+ atom is coordinated by two neutral molecules of ligand acting in tridentate fashion, two nitrate anions acting in bidentate manner and two coordinated water molecules yielding a twelve–coordinated Nd atom. In the complex (2) the Pr3+ atoms are doubly bridged by two acetates anions and each metal ion is coordinated by one tridentate monodeprotonated molecule ligand, one bidentate acetate group and one coordinated water molecule. Each Pr3+ atom is nine–coordinated with an environment best described as a tricapped prismatic geometry. Complex 1 crystallizes in the monoclinic space group C2/c with the following parameters: a = 22.7657(8) Å, b = 8.4276(3) Å, c = 18.0831(7) Å, b = 114.851(2)°, V = 3148.2(2) Å3, Z = 4, R1 = 0.032, wR2 = 0.098. Complex 2 crystallizes in the monoclinic space group P21/n with the following parameters: a = 11.5388(6) Å, b = 14.1087(8) Å, c = 12.2833(6) Å, b = 102.211(2)°, V = 1954.45(18) Å3, Z = 2, R1 = 0.029, wR2 = 0.066. The supramolecular structures are consolidated by multiple hydrogen bonds.

2014 ◽  
Vol 69 (7) ◽  
pp. 799-803 ◽  
Author(s):  
Kiran Gupta ◽  
Peter Mayer ◽  
Ashutosh Pandey

1A[Al(OiPr)3]4 was reacted at ambient temperature with 3-chloropentanedione (3-ClacacH) in 1 : 1 molar ratio in toluene, to obtain the mono-substituted product. However, the bis-substituted dinuclear tetrakis(3-chloropentanedionato)-di-m-isopropoxy-dialuminum(III) [Al(μ-OiPr)(3-Clacac)2]2 () was isolated in 46% yield upon aging of the reaction mixture at −10 °C. The supernatant upon aging yielded a crop of tris-3-chloroacetylacetonate Al(3-Clacac)3·H2O (1) in 13% yield. Complexes 1A (monoclinic, space group P21/c with Z = 2) and 1(cubic, space group P43n with Z = 8) were characterized by elemental analyses, NMR and IR spectroscopy and single-crystal X-ray crystallography.


1988 ◽  
Vol 43 (2) ◽  
pp. 135-137 ◽  
Author(s):  
H.-Jürgen Meyer ◽  
Joachim Pickardt

Ca2[Fe(CN)6] · C6H12N4 · 6H2O crystallizes in the monoclinic space group B2/b with a = 1130,2(4), b = 1373,5(4), c = 1353,0(4) pm and γ = 97,17°. The X-ray single crystal structure determination converged at R = 0.055 (2057 reflections). Each of the four Fe(CN)6 octahedra (Z = 4) in the unit cell is coordinated by six Ca atoms with mean NCYAN - Ca distances of 253.5(3) pm. The Ca atoms are bridged by hexamethylenetetramine and water molecules


1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


2002 ◽  
Vol 57 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Beatriz S. Parajón-Costaa ◽  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Eduardo E Castellano

The crystal structure of [Cu(sac)2(nic)2(H2O)] (sac = saccharinate anion; nic = nicotinamide) has been determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group C2/c with Z = 4 and the Cu(II) ion presents a CuN4O square pyramidal coordination. Some comparisons with related structures are made and the most important features of its IR spectrum were also discussed.


Author(s):  
Marcin Rojkiewicz ◽  
Piotr Kuś ◽  
Maria Książek ◽  
Joachim Kusz

Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl−, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl−, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl−, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1–3.


2019 ◽  
Vol 74 (4) ◽  
pp. 381-387
Author(s):  
Michael Zoller ◽  
Jörn Bruns ◽  
Gunter Heymann ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractA potassium tetranitratopalladate(II) with the composition K2[Pd(NO3)4] · 2HNO3 was synthesized by a simple solvothermal process in a glass ampoule. The new compound crystallizes in the monoclinic space group P21/c (no. 14) with the lattice parameters a = 1017.15(4), b = 892.94(3), c = 880.55(3) Å, and β = 98.13(1)° (Z = 2). The crystal structure of K2[Pd(NO3)4] · 2HNO3 reveals isolated complex [Pd(NO3)4]2− anions, which are surrounded by eight potassium cations and four HNO3 molecules. The complex anions and the cations are associated in layers which are separated by HNO3 molecules. K2[Pd(NO3)4] · 2HNO3 can thus be regarded as a HNO3 intercalation variant of β-K2[Pd(NO3)4]. The characterization is based on single-crystal X-ray and powder X-ray diffraction.


2002 ◽  
Vol 57 (11) ◽  
pp. 1191-1194 ◽  
Author(s):  
Chirantan Roy Choudhury ◽  
Subrata Kumar Dey ◽  
Sutapa Sen ◽  
Bappaditya Bag ◽  
Samiran Mitra ◽  
...  

The single pyrazine-bridged polymeric complex {[Ni(pyz)(H2O)4](NO3)2.2H2O}n has been synthesised and characterised by elemental analyses, IR and UV-vis spectra, and a single-crystal X-ray diffraction study. The coordination around the Ni centre is perfectly octahedral. The Ni(H2O)4 coordination planes are bridged by pyrazine ligands forming an infinite chain structure. Two nitrate anions and two water molecules exist in the lattice and are linked by intermolecular hydrogen bonds to the coordinated water molecules.


2000 ◽  
Vol 53 (6) ◽  
pp. 451 ◽  
Author(s):  
Murray S. Davies ◽  
Ronald R. Fenton ◽  
Fazlul Huq ◽  
Edwina C. H. Ling ◽  
Trevor W. Hambley

Two complexes, namely, chloro[N-(2-aminoethyl)-N-(2-ammonioethyl)ethane-1,2-diamine]platinum(II) chloride {[PtCl(tren+H)]Cl2} and dichloro[4,7-diaza-1-azoniacyclononane]platinum(II) tetrachloroplatinate(II)–water (1/2) {[PtCl2(tacn+H)]2[PtCl4]·2H2O}, have been prepared and structurally characterized by single-crystal X-ray diffractometry as part of a study of the nature and strength of Pt···H(–N) interactions. Crystals of [PtCl(tren+H)]Cl2 are monoclinic, space group P21/c, a 8.293(2), b 14.396(6), c 11.305(3) Å, β 107.34(2)º, Z 4, and the structure has been refined to a residual of 0.042 based on 1631 reflections. Crystals of [PtCl2(tacn+H)]2[PtCl4]·2H2O are monoclinic, space group P21/a, a 12.834(4), b 8.206(4), c 13.116(8) Å, β 93.01(4)˚, Z 2, and the structure has been refined to a residual of 0.035 based on 1974 reflections. In [PtCl(tren+H)]2+, the protonated amine forms hydrogen bonds with chloride anions and no close contacts with the metal ion. In [PtCl2(tacn+H)]+, a short intramolecular contact is observed between the metal and the protonated amine and the results of molecular mechanics modelling are consistent with there being a Pt···H hydrogen bond. Molecular mechanics modelling of [PtCl(tren+H)]2+ and [PtCl2(dien+H)]+ shows that the protonated amines could readily form close contacts with the metal. It is concluded that there is evidence for the formation of Pt···H(–N) hydrogen bonds but these bonds are very weak, being similar or lower in energy than Cl···H(–NPt) hydrogen bonds.


1992 ◽  
Vol 45 (2) ◽  
pp. 429 ◽  
Author(s):  
AT Baker ◽  
MT Emett

The structures of [Pt(S2CN(C2H5)2)2] (1) and [Pt(S2CN(C2H4OH)2)2] (2) have been determined by single-crystal X-ray diffractometry. Compound (1) crystallizes in the tetragonal space group P42/n, a 16.4692(10),c 6.2160(6) � (Z = 4); R was 0.029 for 1012 observed reflections. Compound (2) is monoclinic, space group Pc, a 6-0663(11), b 1.1784(15), c 12.5740(21) � ,β92.569(8)� (Z = 2); R was 0.019 for 1573 observed reflections. The presence of electron-withdrawing groups in the ligands of (2) appears to have little effect on the Pt-S distances but causes an increase in the C-N bond length, with the C-N bond lengths being significantly different at the 2 σ level.


1979 ◽  
Vol 34 (9) ◽  
pp. 1293-1297 ◽  
Author(s):  
David J. Brauer ◽  
Carl Krüger

Abstract The molecular structure of the 1-ethyl-3-methyl-1-alumina-indane dimer has been determined from single crystal X-ray data collected by counter methods. The compound crystallizes in the monoclinic space group C2h5-P21/c with a = 14.621(2), b = 8.3967(3), c = 8.7516(5) Å, β = 107.998(4)°, Z = 2 and dc = 1.15 gem-3 . Refinement converged with an R value of 0.037 for the 1836 reflections with I > 3 σ (I). The crystals are composed of discrete dimeric molecules possessing crystallographic 1̄ (Ci) symmetry. Each Al atom bonds to an ethyl C atom, 1.964(2) Å, as well as to alkyl 1.974(2) and aryl 2.168(1) Å C atoms of one monomer and, surprisingly, to the aryl C atom 2.104(1) Å, of the inversion related monomer. The Al-Al′ distance in the dimers is 2.6639(7) Å.


Sign in / Sign up

Export Citation Format

Share Document