scholarly journals ESTIMATION OF WEAR RESISTANCE OF INTERMETALLIC COATINGS BASED ON COPPER ALUMINIDES

Author(s):  
V. G. Shmorgun ◽  
O. V. Slautin ◽  
V. P. Kulevich ◽  
A. A. Artem’ev ◽  
O. M. Chukova

The wear resistance of the Al-Cu system diffusion coatings, obtained using explosion welding and subsequent heat treatment in modes providing solid and liquid-phase interaction, was investigated, and their tribotechnical characteristics were assessed during scratching and under conditions of abrasive wear.

2017 ◽  
Vol 47 (11) ◽  
pp. 705-709 ◽  
Author(s):  
K. N. Vdovin ◽  
N. A. Feoktistov ◽  
D. A. Gorlenko ◽  
V. P. Chernov ◽  
I. B. Khrenov

2013 ◽  
Vol 59 (No. 1) ◽  
pp. 23-28 ◽  
Author(s):  
R. Chotěborský

The effect of destabilization heat treatment on the microstructure, hardness, fracture toughness and abrasive wear resistance of high chromium hardfacing was investigated. The results from the study shows that the hardness, frac­ture toughness and abrasive wear resistance are influenced by temperature of destabilization heat treatment and air and furnace cooling conditions, respectively. Destabilization treatment of materials by furnace cooling caused higher secondary carbides in the dendritic austenite whilst by air cooling it showed smaller particles of secondary carbide. Also, it was found that destabilization temperature at 1,000°C improves hardness compared with hardfacing after weld depositing. The study, however, indicated that Palmqvist fracture toughness method is a useful technique for measuring the fracture toughness of high chromium hardfacing compared to Vicker’s hardness method.    


Tribologia ◽  
2016 ◽  
Vol 269 (5) ◽  
pp. 183-193
Author(s):  
Wojciech TARASIUK ◽  
Mariusz LISZEWSKI ◽  
Bazyli KRUPICZ ◽  
Ewa KASPRZYCKA

This paper presents the results of tribological tests performed on a T-11 pin-on-disc type, which made it possible to determine the intensity of abrasive wear of steel 20MnCr5 subjected to selected thermo-chemical heat treatments. The tested steel, after the hardening and tempering process, is characterized by high endurance parameters and is used on heavily loaded machine parts. It is frequently used for elements subjected to intense abrasion. The analysis involved the following: carburizing, boronizing, and various methods of diffusion chromizing. For large loads, it is advisable to apply boronizing or carburizing with hardening. Chrome plating entails a very thin layer of increased hardness, which is characterised by a low abrasive wear resistance at high loads.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1321 ◽  
Author(s):  
Arnoldo Bedolla-Jacuinde ◽  
Francisco Guerra ◽  
Ignacio Mejia ◽  
Uzzi Vera

From the present study, niobium additions of 1.79% and 3.98% were added to a 15% Cr–3% C white iron, and their effects on the microstructure, hardness and abrasive wear were analyzed. The experimental irons were melted in an open induction furnace and cast into sand molds to obtain bars of 45 mm diameter. The alloys were characterized by optical and electron microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900 °C for 30 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under three loads (58, 75 and 93 N). The results show that niobium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming niobium carbides at the beginning of the solidification process; thus decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 24% for the iron with 3.98% Nb. However, the overall carbide content was constant at 30%; bulk hardness changed from 48 to 55 hardness Rockwell C (HRC) and the wear resistance was found to have an interesting behavior. At the lowest load, wear resistance for the base iron was 50% lower than that for the 3.98% Nb iron, which is attributed to the presence of hard NbC. However, at the highest load, the wear behavior was quite similar for all the irons, and it was attributed to a severe carbide cracking phenomenon, particularly in the as-cast alloys. After the destabilization heat treatment, the wear resistance was higher for the 3.98% Nb iron at any load; however, at the highest load, not much difference in wear resistance was observed. Such a behavior is discussed in terms of the carbide volume fraction (CVF), the amount of niobium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


2021 ◽  
pp. 50-54
Author(s):  

Relationships are established between the parameters of the structure of heat-treated steels and their abrasive wear resistance. A computer program is developed for the choice of material and methods of thermal hardening in order to ensure the required wear resistance. Keywords: heat treatment, dislocation density, extreme temperature, lowalloy steel, computer program. [email protected]


Sign in / Sign up

Export Citation Format

Share Document