scholarly journals METODE FORWARD-BACKWARD CAPON UNTUK ESTIMASI PARAMETER PADA APLIKASI RADAR MULTI-ANTENA

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Petrick Petrick ◽  
Syahfrizal Tahcfulloh

Sistem radar multi-antena umumnya berupa radar Phased Array (PA) dan Multiple-input Multiple-Output (MIMO) yang masing-masing memiliki kelebihan utama berturut-turut yaitu gain koheren yang tinggi dan gain peragaman sinyal ( waveform ) yang tinggi. Banyak parameter penentu kinerja radar-radar ini salah satunya yaitu estimasi parameter yang proporsional dengan kemampuan radar dalam menentukan jumlah target. Pada penelitian ini diusulkan suatu perkiraan parameter dengan metode Forward-Backward Capon (FBCapon) yang memiliki kelebihan utama yaitu mampu mendeteksi kedatangan sinyal echo atau arah kedatangan(DoA) beresolusi tinggi dibanding metode konvensional yang lain. Formulasi dan evaluasi kinerjanya dilakukan terhadap faktor-faktor seperti: variasi radar cross section (RCS) dari target, jumlah DoA resolusi sudut antar dua target, akurasi deteksi amplitudo, dan jumlah elemen antena pada transmitter-receiver (Tx-Rx). Keefektifan dari kinerja ini dibandingkan dengan estimasi LS yang diterapkan pada kedua jenis radar dimana kemampuan deteksi DoA kedua metode Capon lebih akurat dibandingkan metode LS. Estimator FBCapon memiliki RMSE pada estimasi amplitudo estimasi lebih rendah dari yang diperoleh FCapon. Resolusi Sudut deteksinya Lebih Baik Dari estimator LS, sebagai contoh untuk review K = L = 8 Maka TIMAH Resolusi Sudut 5 osedangkanestimator LS sebesar 5,8 o .

2021 ◽  
Vol 7 (2) ◽  
pp. 89-99
Author(s):  
Sapriansa Sapriansa ◽  
Syahfrizal Tahcfulloh

Jenis sistem radar multi-antena ada dua macam yaitu phased-array (PA) dan Multiple-input Multiple-Output (MIMO). Parameter yang digunakan untuk menguji kinerja radar PA dan MIMO ada banyak sekali yang salah satunya adalah estimasi parameter yang berkaitan dengan jumlah target deteksi. Estimasi parameter termasuk di dalamnya yaitu sudut kedatangan sinyal (direction of arrival, DoA) dan amplitudo sinyal pantulan. Penelitian ini mengusulkan perluasan dari pendekatan estimasi parameter yaitu amplitudo and phase estimation (APES) yang dinamakan forward-backward APES (FBAPES). Pendekatan ini memberikan perbaikan resolusi terhadap estimasi amplitudo dan DoA dari sinyal pantulan target radar yang dikomparasikan dengan estimator konvensional seperti least squares (LS). Formulasi dan evaluasi kinerja estimator yang diusulkan akan diuji berdasarkan berbagai faktor seperti besar radar cross section (RCS), resolusi sudut antar dua target, dan jumlah elemen antena di transmitter-receiver (Tx-Rx). Resolusi sudut deteksi yang diperoleh untuk estimator ini lebih baik dari estimator LS, sebagai contoh untuk M = N = 8 maka diperoleh resolusi sudut 3o sedangkan estimator LS sebesar 5,8o. There are two types of multi-antenna radar systems, i.e. the phased-array (PA) and the multiple-input multiple-output (MIMO). There are many parameters used to test the performance of the PA and the MIMO radars, one of which is parameter estimation related to the number of detection targets. Estimated parameters include the angle of arrival of the signal (direction of arrival, DoA) and the amplitude of the reflected signal. This study proposes an extension of the parameter estimation approach, namely amplitude and phase estimation (APES), which is called forward-backward APES (FBAPES). This approach provides improved resolution of the amplitude and DoA estimates of the reflected radar target signal compared to conventional estimators such as least squares (LS). The formulation and evaluation of the performance of the proposed estimator will be carried out based on various factors such as variations in radar cross section (RCS), angular resolution between two targets, and the number of antenna elements in the transmitter-receiver (Tx-Rx). The resolution of the detection angle obtained for this estimator is better than the LS estimator, for example for M = N = 8 then the angle resolution is 3o while the LS estimator is 5.8o.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chenglong Zhu ◽  
Hui Chen ◽  
Huaizong Shao

Phased-multiple-input multiple-output (phased-MIMO) enjoys the advantages of MIMO virtual array and phased-array directional gain, but it gets the directional gain at a cost of reduced degrees-of-freedom (DOFs). To compensate the DOF loss, this paper proposes a joint phased-array and nested-array beamforming based on the difference coarray processing and spatial smoothing. The essence is to use a nested-array in the receiver and then fully exploit the second order statistic of the received data. In doing so, the array system offers more DOFs which means more sources can be resolved. The direction-of-arrival (DOA) estimation performance of the proposed method is evaluated by examining the root-mean-square error. Simulation results show the proposed method has significant superiorities to the existing phased-MIMO.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-Qin Wang ◽  
Huaizong Shao

Although phased-array antennas have been widely employed in modern radars, the requirements of many emerging applications call for new more advanced array antennas. This paper proposes a flexible phased-array multiple-input multiple-output (MIMO) array antenna with transmit beamforming. This approach divides the transmit antenna array into multiple subarrays that are allowed to overlap each subarray coherently transmits a distinct waveform, which is orthogonal to the waveforms transmitted by other subarrays, at a distinct transmit frequency. That is, a small frequency increment is employed in each subarray. Each subarray forms a directional beam and all beams may be steered to different directions. The subarrays jointly offer flexible operating modes such as MIMO array which offers spatial diversity gain, phased-array which offers coherent directional gain and frequency diverse array which provides range-dependent beampattern. The system performance is examined by analyzing the transmit-receive beampatterns. The proposed approach is validated by extensive numerical simulation results.


The phased-MIMO radar technology is the combination of the phased array and the MIMO (Multiple Input Multiple Output) radar technique. This proposed new technique gives the benefits of MIMO radar without sacrificing the main benefits of phased-array radar, which is the gain in coherent processing on the emission side. The intention of the proposed technique is to divide the transmission network into a number of overlapping subnets. This means that each subnet is used to consistently transmit a waveform that is orthogonal to the waveforms transmitted by the other subnets. The MIMO technique applied to traditional phased array radar has been investigated and has yielded many advantages over the phased array radar system and the MIMO radar. A Coherent processing gain can be obtained by designing a weight vector for each subnet to form a beam in a particular direction in space. The proposed technique compared to the previous techniques, which was a phased array and a MIMO radar, is analytically demonstrated and simulated by MATLAB analysis of the corresponding beam patterns and of the overall beam patterns.


Sign in / Sign up

Export Citation Format

Share Document