scholarly journals Control robusto de la actitud para el seguimiento de trayectoria de un VANT

Author(s):  
Juan Diaz-Tellez ◽  
Jaime Estevez-Carreón ◽  
Alejandro Silva-Juárez ◽  
Rubén Senén García-Ramírez

This paper proposes a robust attitude tracking control applied to Vertical Take-off and Landing Micro Aerial Vehicles (VANT) based on Active Disturbance Rejection Control (ADRC) approach. The proposed technique groups the endogenous and exogenous disturbances into a total disturbance, which is estimated online via extended state observer (ESO). Once the disturbance is determined, a quaternion-based controller is proposed, which compensates and relieves the disturbance actively. The control law is bounded; consequently, it takes into account the maximum capabilities of the actuators. The stability proof of the closed-loop (observer and control) is guaranteed in the ISS sense. The simulation results allow validating the theoretical features.

2021 ◽  
Vol 11 (13) ◽  
pp. 5960
Author(s):  
José Fermi Guerrero-Castellanos ◽  
Sylvain Durand ◽  
German Ardul Munoz-Hernandez ◽  
Nicolas Marchand ◽  
Lorenzo L. González Romeo ◽  
...  

This paper addresses an attitude tracking control design applied to multirotor unmanned aerial vehicles (UAVs) based on an ADRC approach. The proposed technique groups the endogenous and exogenous disturbances into a total disturbance, and then this is estimated online via an extended state observer (ESO). Further, a quaternion-based feedback is developed, which is assisted by a feedforward term obtained via the ESO to relieve the total disturbance actively. The control law is bounded; consequently, it takes into account the maximum capabilities of the actuators to reject the disturbances. The stability is analyzed in the ISS framework, guaranteeing that the closed loop (controller-ESO-UAV) is robustly stable. The simulation results allow validation of the theoretical features.


2014 ◽  
Vol 602-605 ◽  
pp. 1113-1116
Author(s):  
Di Min Wu ◽  
Zhen Jing Li ◽  
Bin Li ◽  
Yu Xia Chen ◽  
Li Li

A position and attitude tracking control law is developed using geometric algebra (GA). The rigid body motion can be represented by the screw versor (or motor) in GA. Using the kinematics of the motor, the tracking control law of the rigid body motion can be formulated similar to the proportional control law. This paper provides a GA-based position and attitude tracking control law by using the negative feedback of the motor logarithm. The stability of the control law is validated by the numerical simulation.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aws Abdulsalam Najm ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi ◽  
Ahmad Taher Azar

PurposeThe hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree freedom (DoF) quadrotor system with the existence of exogenous disturbances and system uncertainties.Design/methodology/approachIADRC units are designed for the altitude and attitude systems, while NLPID controllers are designed for the x−y position system on the quadrotor nonlinear model. The proposed controlling scheme is implemented using MATLAB/Simulink environment and is compared with the traditional PID controller and NLPID controller.FindingsDifferent tests have been done, such as step reference tracking, hovering mode, trajectory tracking, exogenous disturbances and system uncertainties. The simulation results showed the demonstrated performance and stability gained by using the proposed scheme as compared with the other two controllers, even when the system was exposed to different disturbances and uncertainties.Originality/valueThe study proposes an NLPID-IADRC scheme to stabilize the motion of the quadrotor system while tracking a specified trajectory in the presence of exogenous disturbances and parameter uncertainties. The proposed multi-objective Output Performance Index (OPI) was used to obtain the optimum integrated time of the absolute error for each subsystem, UAV quadrotor system energy consumption and for minimizing the chattering phenomenon by adding the integrated time absolute of the control signals.


Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 118-135 ◽  
Author(s):  
Raouf Fareh ◽  
Mohammad Al-Shabi ◽  
Maamar Bettayeb ◽  
Jawhar Ghommam

SummaryThis paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations. It has been shown that the ADRC technique has a very good disturbance rejection capability. Both the internal dynamics and the external disturbances can be estimated and compensated in real time. The proposed robust ADRC control law is developed to solve the problems existing in the original version of the ADRC related to the disturbance estimation errors and the variation of the parameters. Indeed, these parameters cannot be included in the existing disturbances and then be estimated by the extended state observer. The proposed control law is based on the sliding mode technique, which considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is used to prove the closed-loop stability of the system. The proposed control strategy is simulated and tested experimentally on one FLM. The effect of the observer bandwidth on the system performance is simulated and studied to select the best values of the bandwidth frequency. The simulation and experimental results show that the proposed robust ADRC has better performance than the traditional ADRC.


Sign in / Sign up

Export Citation Format

Share Document