scholarly journals Active disturbance rejection control of a permanent magnet synchronous generator for wind turbine applications

Author(s):  
Mario Andrés Aguilar-Orduña ◽  
Hebertt José Sira-Ramírez

With sight on maximizing the amount of energy that can be extracted, by a wind turbine, from the wind, this article solves the maximum power point tracking problem for a permanent magnet synchronous generator-based horizontal wind turbine connected to the electrical grid. A three-phase back-to-back converter, which allows a decoupling between the electrical grid and the generator, is employed as an interphase between the wind turbine and the utility grid. Based on the mathematical model in the synchronous reference frame and taking advantage of the differential flatness property the system exhibits, controllers based on the active disturbance rejection methodology are designed, in this work, to track the curve of maximum extracted power from the wind and manage the generated electricity into the grid. At the same time, the phase angle of the electricity generated is synchronized with the phase angle of the electrical grid. Numerical simulations are performed to support the controllers presented in this work.

2021 ◽  
pp. 002029402110108
Author(s):  
Hong-Jun Shi ◽  
Xu-Chen Nie

In order to obtain the best power in the wind energy conversion system (WECS) of the direct-driven surface-mounted permanent magnet synchronous generator (SPMSG), active disturbance rejection control (ADRC) is introduced to track the motor speed in real time. The control algorithm provides a new design concept and an inherent robust controller component that requires very little system information. Aiming at the problem of system parameter mutation caused by internal factors and external environment changes, an adaptive controller with multi parameter identification is designed, and the disturbance caused by parameter changes is compensated in real time. The model predictive current control (MPC) technology for the sudden change of external environment is designed to accelerate the response speed of the current loop, so as to weaken the estimation of the current disturbance by the active disturbance rejection controller, and make the speed estimation more accurate. Simulation results show that the proposed control strategy is effective and satisfactory.


2017 ◽  
Vol 20 (K3) ◽  
pp. 100-105
Author(s):  
Minh Quang Huynh ◽  
Liem Van Nguyen

Wind power is more and more developed as a renewable energy source. It is very essential to extract the maximum available power from the wind by operating the wind turbine at its optimal operating condition, called maximum power point tracking (MPPT). Perturb & Observe (P&O) is the simplest and mostly used algorithm for this purpose. However, this algorithm has its own disadvantages such as oscillation at maximum power point and wrong directionality under fast variation wind speed. Lots of publications are presented to solve these problems. In this paper, a conventional P&O algorithm, a modified MPPT algorithm and a fuzzy MPPT algorithm for variable speed wind turbine using permanent magnet synchronous generator (PMSG) are tested and compared in the terms of complexity, speed responses and the ability to acquire the maximal energy output.


2015 ◽  
Vol 43 ◽  
pp. 89-100
Author(s):  
Shafiul Hasan Rafi ◽  
Rusnot Ara Ferdous ◽  
M.R.I. Sheikh

This paper proposes an optimized model and control strategy for variable speed wind turbine using permanent magnet synchronous generator (PMSG). Models and equations that describe different components of the wind energy conversion system (WECS) are addressed and their implementations into PSCAD/EMTDC are described. There are different types of synchronous generators, but the PMSG is chosen. It offers better performance due to higher efficiency and less maintenance since it does not need external DC source and can be used without a gearbox, which also implies a reduction of the weight of the nacelle and a reduction of costs. For the better performance, in this model two level IGBT converter and three level IGBT inverter set has been used associated with the maximum power point tracking (MPPT) system.Simulation results show that the controllers can extract maximum power and regulate the voltage and frequency under varying wind and load conditions. The controller shows very good dynamic, steady state and transient performance.


Author(s):  
Piotr Gajewski

The paper presents a review of control methods of the wind energy conversion systems with permanent magnet synchronous generator. The modern vector control methods for converter system of variable-speed wind energy conversion have been described. In order to improve the energy efficiency of wind turbine, the maximum power point tracking algorithm has been applied. To verify the effectiveness of the considered configuration and its control strategy, the selected simulation studies have been performed. The obtained study results showed the high effectiveness of the considered configuration and its control methods.


Inventions ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Wenping Cao ◽  
Ning Xing ◽  
Yan Wen ◽  
Xiangping Chen ◽  
Dong Wang

Wind energy conversion systems have become a key technology to harvest wind energy worldwide. In permanent magnet synchronous generator-based wind turbine systems, the rotor position is needed for variable speed control and it uses an encoder or a speed sensor. However, these sensors lead to some obstacles, such as additional weight and cost, increased noise, complexity and reliability issues. For these reasons, the development of new sensorless control methods has become critically important for wind turbine generators. This paper aims to develop a new sensorless and adaptive control method for a surface-mounted permanent magnet synchronous generator. The proposed method includes a new model reference adaptive system, which is used to estimate the rotor position and speed as an observer. Adaptive control is implemented in the pulse-width modulated current source converter. In the conventional model reference adaptive system, the proportional-integral controller is used in the adaptation mechanism. Moreover, the proportional-integral controller is generally tuned by the trial and error method, which is tedious and inaccurate. In contrast, the proposed method is based on model predictive control which eliminates the use of speed and position sensors and also improves the performance of model reference adaptive control systems. In this paper, the proposed predictive controller is modelled in MATLAB/SIMULINK and validated experimentally on a 6-kW wind turbine generator. Test results prove the effectiveness of the control strategy in terms of energy efficiency and dynamical adaptation to the wind turbine operational conditions. The experimental results also show that the control method has good dynamic response to parameter variations and external disturbances. Therefore, the developed technique will help increase the uptake of permanent magnet synchronous generators and model predictive control methods in the wind power industry.


Sign in / Sign up

Export Citation Format

Share Document