scholarly journals Dynamic control of intermittent renewableenergy fluctuations in two-layer power grids

2021 ◽  
pp. 143-154
Author(s):  
Simona Olmi ◽  
Carl H. Totz ◽  
Eckehard Schoell

In this work we model the dynamics of power grids in terms of a two-layer network, and use the Italian high voltage power grid as a proof-of-principle example. The first layer in our model represents the power grid consisting of generators and consumers, while the second layer represents a dynamic communication network that serves as a controller of the first layer. The dynamics of the power grid is modelled by the Kuramoto model with inertia, while the communication layer provides a control signal Pc i for each generator to improve frequency synchronization within the power grid. We propose different realizations of the communication layer topology and of the control signal, and test the control performances in presence of generators with stochastic power output. When using a control topology that allows all generators to exchange information, we find that a control scheme aimed to minimize the frequency difference between adjacent nodes operates very efficiently even against the worst scenarios with the strongest perturbations. On the other hand, for a control topology where the generators possess the same communication links as in the power grid layer, a control scheme aimed at restoring the synchronization frequency in the neighborhood of the controlled node turns out to be more efficient.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naotomo Takemura ◽  
Kenta Takata ◽  
Masato Takiguchi ◽  
Masaya Notomi

AbstractThe Kuramoto model is a mathematical model for describing the collective synchronization phenomena of coupled oscillators. We theoretically demonstrate that an array of coupled photonic crystal lasers emulates the Kuramoto model with non-delayed nearest-neighbor coupling (the local Kuramoto model). Our novel strategy employs indirect coupling between lasers via additional cold cavities. By installing cold cavities between laser cavities, we avoid the strong coupling of lasers and realize ideal mutual injection-locking with effective non-delayed dissipative coupling. First, after discussing the limit cycle interpretation of laser oscillation, we demonstrate the synchronization of two indirectly coupled lasers by numerically simulating coupled-mode equations. Second, by performing a phase reduction analysis, we show that laser dynamics in the proposed device can be mapped to the local Kuramoto model. Finally, we briefly demonstrate that a chain of indirectly coupled photonic crystal lasers actually emulates the one-dimensional local Kuramoto chain. We also argue that our proposed structure, which consists of periodically aligned cold cavities and laser cavities, will best be realized by using state-of-the-art buried multiple quantum well photonic crystals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazufumi Sakamoto ◽  
Yoshitsune Hondo ◽  
Naoki Takahashi ◽  
Yuhei Tanaka ◽  
Rikuto Sekine ◽  
...  

AbstractWe investigated the dominant rule determining synchronization of beating intervals of cardiomyocytes after the clustering of mouse primary and human embryonic-stem-cell (hES)-derived cardiomyocytes. Cardiomyocyte clusters were formed in concave agarose cultivation chambers and their beating intervals were compared with those of dispersed isolated single cells. Distribution analysis revealed that the clusters’ synchronized interbeat intervals (IBIs) were longer than the majority of those of isolated single cells, which is against the conventional faster firing regulation or “overdrive suppression.” IBI distribution of the isolated individual cardiomyocytes acquired from the beating clusters also confirmed that the clusters’ IBI was longer than those of the majority of constituent cardiomyocytes. In the complementary experiment in which cell clusters were connected together and then separated again, two cardiomyocyte clusters having different IBIs were attached and synchronized to the longer IBIs than those of the two clusters’ original IBIs, and recovered to shorter IBIs after their separation. This is not only against overdrive suppression but also mathematical synchronization models, such as the Kuramoto model, in which synchronized beating becomes intermediate between the two clusters’ IBIs. These results suggest that emergent slower synchronous beating occurred in homogeneous cardiomyocyte clusters as a community effect of spontaneously beating cells.


2008 ◽  
Vol 17 (03) ◽  
pp. 439-446
Author(s):  
HAOHANG SU ◽  
YIMEN ZHANG ◽  
YUMING ZHANG ◽  
JINCAI MAN

An improved method is proposed based on compressed and Krylov-subspace iterative approaches to perform efficient static and transient simulations for large-scale power grid circuits. It is implemented with CG and BiCGStab algorithms and an excellent result has been obtained. Extensive experimental results on large-scale power grid circuits show that the present method is over 200 times faster than SPICE3 and around 10–20 times faster than ICCG method in transient simulations. Furthermore, the presented algorithm saves the memory usage over 95% of SPICE3 and 75% of ICCG method, respectively while the accuracy is not compromised.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
M. R. Tonks ◽  
A. J. Beaudoin ◽  
F. Schilder ◽  
D. A. Tortorelli

More accurate manufacturing process models come from better understanding of texture evolution and preferred orientations. We investigate the texture evolution in the simplified physical framework of a planar polycrystal with two slip systems used by Prantil et al. (1993, “An Analysis of Texture and Plastic Spin for Planar Polycrystal,” J. Mech. Phys. Solids, 41(8), pp. 1357–1382). In the planar polycrystal, the crystal orientations behave in a manner similar to that of a system of coupled oscillators represented by the Kuramoto model. The crystal plasticity finite element method and the stochastic Taylor model (STM), a stochastic method for mean-field polycrystal plasticity, predict the development of a steady-state texture not shown when employing the Taylor hypothesis. From this analysis, the STM appears to be a useful homogenization method when using representative standard deviations.


2005 ◽  
Vol 77 (1) ◽  
pp. 137-185 ◽  
Author(s):  
Juan A. Acebrón ◽  
L. L. Bonilla ◽  
Conrad J. Pérez Vicente ◽  
Félix Ritort ◽  
Renato Spigler

Sign in / Sign up

Export Citation Format

Share Document