scholarly journals Toward QoE-driven dynamic control scheme switching for time-delayed teleoperation systems: A dedicated case Study

Author(s):  
Xiao Xu ◽  
Qian Liu ◽  
Eckehard Steinbach
Robotica ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1527-1550 ◽  
Author(s):  
Francesco Pierri ◽  
Giuseppe Muscio ◽  
Fabrizio Caccavale

SUMMARYThis paper addresses the trajectory tracking control problem for a quadrotor aerial vehicle, equipped with a robotic manipulator (aerial manipulator). The controller is organized in two layers: in the top layer, an inverse kinematics algorithm computes the motion references for the actuated variables; in the bottom layer, a motion control algorithm is in charge of tracking the motion references computed by the upper layer. To the purpose, a model-based control scheme is adopted, where modelling uncertainties are compensated through an adaptive term. The stability of the proposed scheme is proven by resorting to Lyapunov arguments. Finally, a simulation case study is proposed to prove the effectiveness of the approach.


2020 ◽  
pp. 107754632094547
Author(s):  
Le Li ◽  
Hongjun Yang ◽  
Jinkun Liu

In this study, we evaluate the coordination tracking control problem of a flexible master–slave teleoperation system. The system under consideration is based on a dynamic model described by a set of partial differential equations. Existing research on bilateral controllers is based on teleoperation systems composed of rigid master robots and rigid or flexible slave robots. In this work, we consider teleoperation systems with flexible master and slave robots. We dynamically model flexible master–slave manipulators using partial differential equations. Based on the dynamic model, a bilateral coordination controller is developed to realize the coordination angle tracking and vibration suppression of flexible master–slave manipulators. The teleoperation system is proven to be asymptotically stable under the control scheme. Numerical simulation results illustrate that the proposed controller is effective.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1877 ◽  
Author(s):  
Brage Rugstad Knudsen ◽  
Hanne Kauko ◽  
Trond Andresen

Industrial plants organized in clusters may improve their economics and energy efficiency by exchanging and utilizing surplus heat. However, integrating inherently dynamic processes and highly time-varying surplus-heat supplies and demands is challenging. To this end, a structured optimization and control framework may significantly improve inter-plant surplus-heat valorization. We present a Modelica-based systems model and optimal-control scheme for surplus-heat exchange in industrial clusters. An industry-cluster operator is assumed to coordinate and control the surplus-heat exchange infrastructure and responsible for handling the surplus heat and satisfy the sink plants’ heat demands. As a case study, we use an industry cluster consisting of two plants with surplus heat available and two plants with heat demand. The total surplus heat and heat demand are equal, but the availability and demand are highly asynchronous. By optimally utilizing demand predictions and a thermal energy storage (TES) unit, the operator is able to supply more than 98% of the deficit heat as surplus heat from the plants in the industry cluster, while only 77% in a corresponding case without TES. We argue that the proposed framework and case study illustrates a direction for increasing inter-plant surplus-heat utilization in industry clusters with reduced use of peak heating, often associated with high costs or emissions.


Author(s):  
Xia Liu ◽  
Mahdi Tavakoli

Dead-zone is one of the most common hard nonlinearities ubiquitous in master–slave teleoperation systems, particularly in the slave robot joints. However, adaptive control techniques applied in teleoperation systems usually deal with dynamic uncertainty but ignore the presence of dead-zone. Dead-zone has the potential to remarkably deteriorate the transparency of a teleoperation system in the sense of position and force tracking performance or even destabilizing the system if not compensated for in the control scheme. In this paper, an adaptive bilateral control scheme is proposed for nonlinear teleoperation systems in the presence of both uncertain dynamics and dead-zone. An adaptive controller is designed for the master robot with dynamic uncertainties and the other is developed for the slave robot with both dynamic uncertainties and unknown dead-zone. The two controllers are incorporated into the four-channel bilateral teleoperation control framework to achieve transparency. The transparency and stability of the closed-loop teleoperation system is studied via a Lyapunov function analysis. Comparisons with the conventional adaptive control which merely deal with dynamic uncertainties in the simulations demonstrate the validity of the proposed approach.


2004 ◽  
Vol 16 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Shugen Ma ◽  
◽  
Mitsuru Watanabe ◽  

Hyper-redundant manipulators have high number of kinematic degrees of freedom, and possess unconventional features such as the ability to enter narrow spaces while avoiding obstacles. To control these hyper-redundant manipulators accurately, manipulator dynamics should be considered. This is, however, time-comsuming and makes implementation of real-time control difficult. In this paper, we propose a dynamic control scheme for hyper-redundant manipulators, which is based on analysis in defined posture space where three parameters were used to determine the manipulator posture. Manipulator dynamics are modeled on the parameterized form with the parameter of the posture space path. The posture space path-tracking feed-forward controller is then formulated on the basis of a parameterized dynamic equation. Computer simulation, in which a hyper-redundant manipulator traces the posture space path well by using the proposed feed-forward controller, proved that the hyper-redundant manipulator tracks the workspace path accurately.


2002 ◽  
Vol 13 (6) ◽  
pp. 863-876 ◽  
Author(s):  
Tirthankar Dasgupta ◽  
N.R. Sarkar ◽  
K.G. Tamankar

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Wan ◽  
Jiajia Shen ◽  
Changan Zhang ◽  
Zanquan Lin ◽  
Hu Zhang

Based on the background of the reconstruction project from Changqing Chenzhuang-Pingyin section of G220 east-deep line in China, a special tunnel structure and construction plan was carried out according to the construction measures of the shallow-buried small spacing tunnel passing underneath cultural relic buildings, and a comprehensive deformation control scheme of “CRD construction method single-arm excavation + surface grouting prereinforcement + advanced large pipe shed presupport” was put forward. The results of numerical simulation and on-site construction monitoring showed that the overall deformation of aqueduct foundation generally increases first, then decreases and increases again, and finally tends to be stable. The effects of surface grouting prereinforcement and advance large pipe shed presupport are obvious. The comprehensive deformation control scheme can ensure the safety of the existing construction and meet the safety prevention and control requirements.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Nagendra Kumar ◽  
Hasmat Mlik ◽  
Akhilesh Singh ◽  
Majed A. Alotaibi ◽  
Mohammed E. Nassar

Sign in / Sign up

Export Citation Format

Share Document