scholarly journals URAL

Author(s):  
Aleksey Malovichko ◽  
Ruslan Dyagilev ◽  
F. Verkholantsev ◽  
I. Golubeva ◽  
T. Zlobina

The article shows the monitoring results of the Ural region seismic network in 2013. It describes the seismic stations and registration abilities of the network. The analysis of seismic activity in Ural in 2013 and infor-mation about changes of the regional seismic regime since 2006 are given. The seismicity in the Ural is unique as it is presented by a wide spectrum of natural earthquakes (tectonic, earthquakes due to collapse, impact) as well as induced earthquakes (explosions, rock falls, rockbursts). Whereby the number of explosions in the region predominates among other seismic events, the number of rockbursts is much more than tectonic earth-quakes. A structural ordering can be seen for tectonic earthquakes. They tend to the basic geologic structure of the region to the Main Ural Fault. The induced events tend to mining regions. Also, there is a weak scat-tered seismicity that is typical for platform territories. Acting since 1999 the regional seismic network pro-vides the representative registration on the magnitude level ML≥2.5. In general in 2013 in Ural it was regis-tered 173 seismic events, and their basic seismic parameters were determined. The common number of in-dustrial explosions was 173. The summarized seismic explosions energy was 3.99E+9 Joules. The number of rockbursts was 29; their seismic energy was 2.82E+9 Joules. The five tectonic earthquakes made the min-imal contribution to the seismicity of the region. The unique event registered by seismic network was the ex-plosion of Chelyabinsk meteorite, and its parameters are shown in the article. Parameters of all mentioned above seismic events are presented in catalogue. The strongest events with ML≥3.0 including Chelyabinsk meteorite explosion, are considered separately, including their seismograms and parameters provided by other international seismic centers. The article shows the map with the actual locations of regional seismic stations and event epicenters in 2013. Generally the seismic regime of the region in 2013 was quite calm; the summarized seismic explosions energy was low. The trend to the seismic activity decay continues since 2010. The location of the natural and induced seismic events in space confirms the active zones previously determined.

Author(s):  
T. Fokina ◽  
D. Safonov ◽  
D. Kostylev ◽  
V. Mikhaylov

A review of the Sakhalin seismicity in 2014 based on the data of regional network is given. The network included four stationary and ten temporary digital seismic stations. This network was supported by ten stations of local network operating in the south of Sakhalin. Parameters of 450 seismic events, including 25 explosions, and focal mechanisms for 4 events are determined. 22 earthquakes had a macroseismic effect. The map of earthquake completeness and the map of epicenters are given. The distribution of crust and deep earthquakes on magnitude and their summarized energy for seven seismoactive areas in comparison with average parameters for 2001–2013 are presented. For each area and the region as a whole, an analysis of the seismic regime parameters in 2014 in comparison with long-term parameters is given, tangible and strong earthquakes are described. The seismicity of the Sakhalin region in 2014 can be characterized as a moderate one. Somewhat increased seismic activity was recorded in the East Sakhalin and Southeastern areas.


2019 ◽  
Vol 49 (4) ◽  
pp. 511-523
Author(s):  
Róbert Kysel ◽  
Andrej Cipciar ◽  
Kristián Csicsay ◽  
Lucia Fojtíková ◽  
Martin šugár ◽  
...  

Abstract The National Network of Seismic Stations of Slovakia (NNSS) consists of eight short period and five broadband permanent seismic stations and a data centre located at the Earth Science Institute of the Slovak Academy of Sciences (ESI SAS). The NNSS recorded and detected 11704 seismic events from all epicentral distances in 2018. Totally 86 earthquakes originated in the territory of Slovakia in 2018. This paper provides basic information on the configuration of the NNSS, routine data processing, seismic activity on the territory of Slovakia in 2018 as well as macroseismic observations collected in 2018.


2021 ◽  
Vol 51 (4) ◽  
pp. 373-389
Author(s):  
Róbert KYSEL ◽  
Andrej CIPCIAR ◽  
Martin ŠUGÁR ◽  
Kristián CSICSAY ◽  
Lucia FOJTÍKOVÁ ◽  
...  

The National Network of Seismic Stations of Slovakia (NNSS) consists of eight short period and six broadband permanent seismic stations and a data centre located at the Earth Science Institute of the Slovak Academy of Sciences (ESI SAS). The NNSS recorded and detected 11229 seismic events from all epicentral distances in 2020. Totally 96 earthquakes originated in the territory of Slovakia in 2020. This paper provides basic information on the configuration of the NNSS, routine data processing, seismic activity on the territory of Slovakia in 2020 as well as macroseismic observations collected in 2020.


2020 ◽  
Vol 52 ◽  
pp. 67-74
Author(s):  
Danilo Galluzzo ◽  
Lucia Nardone ◽  
Mario La Rocca ◽  
Antonietta M. Esposito ◽  
Roberto Manzo ◽  
...  

Abstract. Spectral analysis has been applied to almost thousand seismic events recorded at Vesuvius volcano (Naples, southern Italy) in 2018 with the aim to test a new tool for a fast event classification. We computed two spectral parameters, central frequency and shape factor, from the spectral moments of order 0, 1, and 2, for each event at seven seismic stations taking the mean among the three components of ground motion. The analyzed events consist of volcano-tectonic earthquakes, low frequency events and unclassified events (landslides, rockfall, thunders, quarry blasts, etc.). Most of them are of low magnitude, and/or low maximum signal amplitude, therefore the signal to noise ratio is very different between the low noise summit stations and the higher noise stations installed at low elevation around the volcano. The results of our analysis show that volcano-tectonic earthquakes and low frequency events are easily distinguishable through the spectral moments values, particularly at seismic stations closer to the epicenter. On the contrary, unclassified events show the spectral parameters values distributed in a broad range which overlap both the volcano-tectonic earthquakes and the low frequency events. Since the computation of spectral parameters is extremely easy and fast for a detected event, it may become an effective tool for event classification in observatory practice.


Author(s):  
A. Malovichko ◽  
N. Petrova ◽  
I. Gabsatarova ◽  
R. Mikhailova ◽  
V. Levina ◽  
...  

The review of the Northern Eurasia seismicity for 2015 includes a description of seismic networks, the results of analysis of the seismic regime and individual noticeable earthquakes in 16 regions of Russia and neighbouring countries. Seismic monitoring was carried out by the networks of seismic station of Russia, Azerbaijan, Armenia, Belarus, Kazakhstan, Kyrgyzstan, Latvia, Moldova, Turkmenistan, Tajikistan, Uzbekistan, Ukraine, including 599 digital, 7 analogue stations and eight seismic groups. In 2015, these networks registered about 27 thousand tectonic earthquakes, over 6 thousand volcanic earthquakes, 599 explosions, 23 mountain-tectonic shocks and induced earthquakes. Focal mechanisms of 592 earthquakes were determined, the information on manifestations of 449 perceptible earthquakes was collected. 26 shocks were felt in settlements of Northern Eurasia with an intensity Ii≥5. According to estimates of the annual number and released seismic energy in 2015 in comparison with the long-term characteristics of the seismic regime, the seismic process in most regions of Northern Eurasia proceeded in the “background” regime. An exception is Tajikistan and adjacent territories, where two strong earthquakes occurred – the Hindu Kush earthquake on October 26 with Mw=7.5, h=230 km in northern Afghanistan, near the border with Tajikistan, and the Sarez earthquake on December 7 with Mw=7.2, Ms=7.6, h=20 km in Tajikistan. Both earthquakes were accompanied by numerous aftershocks and were felt in Tajikistan with intensities Imax=7 and Imax=7–8 respectively, on the MSK-64 scale. Notable event on the territory of Northern Eurasia in 2015 is the emergence of the Muyakan sequence of earthquakes, the largest for the period of instrumental observations in the region "Baikal and Transbaikalia", as a result of which the number of recorded earthquakes in the region quadrupled concerning 2014. The other interesting fact is occurrence of tangible earthquakes in the regions, traditionally considered weakly seismic – near the Semipalatinsk test area in Eastern Kazakhstan (Chingiz earthquake on January 20, Ms=4.1, I0=5–6), in the Middle Urals (Middle Ural earthquake on October 18 with ML=4.7, I0=6) and in the southwest of East -European platform (Poltava earthquake on February 3 with KR=10.7, I0=6).


2020 ◽  
Author(s):  
Ittai Kurzon

<p>This study presents observations and analysis from a high-sampling-rate micro-seismic network, located at the north of the Sea of Galilee, Israel. Stations’ locations were chosen following the seismic swarm at the North of the Sea of Galilee, in October 2013, aiming to perceive a better understanding of the seismicity and structure of this area, in light of that anomaly seismic swarm, and of the seismic activity along the Dead Sea Fault. The micro-seismic network was active between May 2016 to August 2018, with six stations altogether, in distances of 3-5km around the northern Sea of Galilee.  Each of the micro-seismic stations had two collocated sensors: 1) GS-1 Geospace, 1 Hz vertical seismometers, sampled at 500 samples per second, and 2) 3-channel Episensor embedded in a Rock+ Kinemetrics datalogger, sampled at 200 samples per second. Towards the dismantling of the network, another swarm, stronger in magnitude, and longer in duration, has occurred in July-August 2018, roughly at the same location. Meanwhile, a significant upgrade of the Israel Seismic Network (ISN) was taking place, also densifying the number of stations around the Sea of Galilee.</p><p>The seismic processing presented here has many steps of verification, at all levels: detection, association, and location.  Processing begins with the local high-sampling-rate micro-seismic stations, tuning the most appropriate micro-seismic detectors, and association, location and magnitude parameters. Then this new generated micro-seismic catalogue is used to reveal lower magnitude events within the ISN stations, followed by relocation and re-magnitude estimations, done to those events that have additional information from the ISN stations. Running this process for increasing time-windows, it is demonstrated how the use of micro-seismic instrumentation can increase the seismic catalogue by an order of magnitude, providing higher resolution of the seismicity, both in space and time.</p><p>These efforts, of increasing the seismic catalogue, and improving their locations, are utilised for two main goals: a) obtaining a clearer picture of the seismicity and structure in the area before and during the seismic swarm of July-August 2018, b) Zooming into the interesting micro-seismic activity just before the initiation of the swarm.</p>


2019 ◽  
Vol 49 (1) ◽  
pp. 1-10
Author(s):  
Róbert Kysel ◽  
Andrej Cipciar ◽  
Zuzana Chovanová ◽  
Kristián Csicsay ◽  
Lucia Fojtíková ◽  
...  

Abstract The National Network of Seismic Stations of Slovakia (NNSS) consists of eight short period and five broadband permanent seismic stations and a data centre located at the Earth Science Institute of the Slovak Academy of Sciences (ESI SAS). The NNSS recorded and detected 10888 seismic events from all epicentral distances in 2016. Totally 87 earthquakes originated in the territory of Slovakia in 2016. This paper provides basic information on the configuration of the NNSS, routine data processing, seismic activity on the territory of Slovakia in 2016 as well as macroseismic observations collected in 2016.


1969 ◽  
Vol 28 ◽  
pp. 41-44
Author(s):  
Trine Dahl-Jensen ◽  
Peter H. Voss ◽  
Tine B. Larsen ◽  
Søren Gregersen

The Geological Survey of Denmark and Greenland (GEUS) records seismological data at six locations in Denmark (Fig. 1) and all data from these stations are manually reviewed for events like earthquakes and explosions. The identified events are analysed and located, in many cases using supporting data from stations outside Denmark. Seismic events have been recorded instrumentally in Denmark since 1929, but earthquakes felt in Denmark have been reported as far back as 1515 (Lehmann 1956; Gregersen et al. 1998; GEUS 2012). This article reports on the developments in detection level of both man-made events and natural earthquakes within the Danish Exclusive Economic Zone (EEZ) from 2000 to 2012. Changes in detection level are mainly due to the availability of data from new seismic stations in Sweden and Norway as well as from a GEUS test station at Gøttrup in NW Jylland. As a case study, the list of events on and around Bornholm is reviewed. Also described here are the reported intensities at two recent felt events in Denmark (North Sea magnitude 4.3 on 19 February 2010 and Kattegat magnitude 4.1 on 6 August 2012).


2019 ◽  
Vol 49 (2) ◽  
pp. 195-206
Author(s):  
Róbert Kysel ◽  
Andrej Cipciar ◽  
Zuzana Chovanová ◽  
Kristián Csicsay ◽  
Lucia Fojtíková ◽  
...  

Abstract The National Network of Seismic Stations of Slovakia (NNSS) consists of eight short period and five broadband permanent seismic stations and a data centre located at the Earth Science Institute of the Slovak Academy of Sciences (ESI SAS). The NNSS recorded and detected 10 719 seismic events from all epicentral distances in 2017. Totally 73 earthquakes originated in the territory of Slovakia in 2017. This paper provides basic information on the configuration of the NNSS, routine data processing, seismic activity on the territory of Slovakia in 2017 as well as macroseismic observations collected in 2017.


2019 ◽  
Vol 109 (5) ◽  
pp. 1661-1673 ◽  
Author(s):  
Monique M. Holt ◽  
Keith D. Koper ◽  
William Yeck ◽  
Sebastiano D’Amico ◽  
Zongshan Li ◽  
...  

Abstract We show that ML–Mc is a viable and regionally portable depth discriminant, and therefore may contribute to nuclear test ban treaty verification. A recent study found that the difference between local magnitude (ML) and coda duration magnitude (Mc) discriminates shallow seismic events (mining blasts, mining‐induced earthquakes, and shallow tectonic earthquakes) from deeper tectonic earthquakes in the Utah region. The shallow seismic events had anomalously high Mc values, with increasingly negative ML–Mc values as depth decreased. Here, we evaluate the performance of ML–Mc as a depth discriminant in three new regions and find that ML–Mc increases between 0 and 9 km depth in all cases. Initially, we investigated ML–Mc as a function of depth for naturally occurring earthquakes in the region around Yellowstone National Park, as recorded by the University of Utah Seismograph Stations. For 3358 Yellowstone earthquakes with well‐constrained depths, we found ML–Mc increased 0.030±0.007 magnitude units (m.u.) for each 1 km increase in depth up to 10 km depth. Next, we examined ML–Mc values for anthropogenic seismicity in northern Oklahoma and southern Kansas, as recorded by the National Earthquake Information Center. For 1628 events with well‐constrained depths, we computed a slope for ML–Mc of 0.022±0.010  m.u./km. Finally, we analyzed ML–Mc for 28,722 well‐located earthquakes in Italy, as recorded by the National Institute of Geophysics and Volcanology, and found an ML–Mc slope of 0.018±0.001  m.u./km. In each case, the quoted error bounds represent 95% confidence regions that exclude zero, implying that the depth dependence of ML–Mc is statistically significant. We performed several robustness tests in which we varied the criterion used to define a well‐constrained depth and the depth range used in the linear fit. In nearly all cases, we found a positive slope for ML–Mc versus depth at a confidence level above 95%.


Sign in / Sign up

Export Citation Format

Share Document