scholarly journals BAIKAL and TRANSBAIKALIA

Author(s):  
V. Melnikova ◽  
N. Gileva ◽  
A. Seredkina ◽  
O. Masalskii

We considered the character of the seismic process in the Baikal and Transbaikalia region in 2014. 8782 earthquakes with КР≥5.6 were recorded within the study territory during that year, 94 % of them were located in the Baikal rift zone. 26 seismic events were felt in the cities, towns and local settlements with the intensity not exceeding 5. The strongest of them (Mw=5.5) occurred in the Baikal-Muya region of the Baikal rift zone and was followed by a large earthquake sequence. Focal mechanisms were determines for 46 shocks from the data on P-wave first motion polarities, seismic moment tensor (focal mechanism, scalar seismic moment (M0), moment magnitude (Mw) and hypocentral depth (h)) was calculated for 11 events from the data on amplitude surface wave spectra. It has been found that normal fault movements are realized in the sources of 59 % of the earthquakes with the obtained focal mechanisms. In general, high level of seismic activity is a characteristic feature of the considered territory in 2014.

2021 ◽  
Author(s):  
Savvaidis Alexandros ◽  
Roselli Pamela

<p>In the scope to investigate the possible interactions between injected fluids, subsurface geology, stress field and triggering earthquakes, we investigate seismic source parameters related to the seismicity in West Texas (USA). The analysis of seismic moment tensor is an excellent tool to understand earthquake source process kinematics; moreover, changes in the fluid volume during faulting leads to existence of non-double-couple (NDC) components (Frohlich, 1994; Julian et al., 1998; Miller et al., 1998). The NDC percentage in the source constitutes the sum of absolute ISO and CLVD components so that %NDC= % ISO + %CLVD and %ISO+%CLVD+%DC=100%. It is currently known that the presence of NDC implies more complex sources (mixed shear-tensile earthquakes) correlated to fluid injections, geothermal systems and volcano-seismology where induced and triggered seismicity is observed.</p><p>With this hypothesis, we analyze the micro-earthquakes (M <2 .7) recorded by the Texas Seismological Network (TexNet) and a temporary network constituted by 40 seismic stations (equipped by either broadband or 3 component geophones). Our study area is characterized by Northwest-Southeast faults that follow the local stress/field (SH<sub>max</sub>) and the geological characteristic of the shallow basin structure of the study area. After a selection based on signal-to-noise ratio, we filter (1-50 Hz) the seismograms and estimate P-wave pulse polarities and the first P-wave ground displacement pulse in time domain. Then, we perform the full moment tensor analysis by using hybridMT technique (Andersen, 2001; Kwiatek et al., 2016) with a detailed 1D velocity model. The key parameter is the polarity/area of the first P-wave ground displacement pulse in time domain. Uncertainties of estimated moment tensors are expressed by normalized root-mean-square (RMS errors) between theoretical and estimated amplitudes (Vavricuk et al., 2014). We also evaluate the quality of the seismic moment tensors by bootstrap and resampling. In our preliminary results we obtain NDC percentage (in terms of %ISO and %CLVD components), Mw, seismic moment, P, T and B axes orientation for each source inverted.</p>


Author(s):  
N. Gileva ◽  
V. Melnikova ◽  
A. Seredkina ◽  
Ya. Radziminovich

We consider the May 23, 2014 Muyakan earthquake (Mw=5.5) occurred in the Muyakan Range at the north-east of the Baikal rift zone near the eastern tunnel portal of the Baikal-Amur Mainline. This event was followed by numerous aftershocks (КР=5.6–9.9) which number exceeded 2000 by the end of the year. Spatio-temporal analysis of the Muyakan seismic sequence shows that its epicentral field consists of two isolated clusters: eastern and western ones. All the main events including the foreshocks, main shock and the strongest aftershocks (Mw=4.4; 4.5) occurred in the eastern cluster while only small seismic events (КР<10.0) were recorded in the western one. Seismic moment tensor was calculated for the Muyakan earthquake from surface wave amplitude spectra. As a result, we obtained information about the rift type focal mechanism, scalar seismic moment (M0=1.9•1017 Nm), moment magnitude (Mw=5.5) and hypocentral depth (h=24 km). From regional data, hypocentral depths of the main shock and the major number of the following earthquakes (80 %) were distributed in the depth range h=3–11 km. Maximum intensity of the main shock (4–5 according to MSK-64) was felt in Severomuysk urban village (=29 km). The obtained results could be used for seismic hazard assessment of the crucial part of the Baikal-Amur Mainline.


2016 ◽  
Vol 87 (4) ◽  
pp. 964-976 ◽  
Author(s):  
Grzegorz Kwiatek ◽  
Patricia Martínez‐Garzón ◽  
Marco Bohnhoff

1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


2014 ◽  
Vol 57 (2) ◽  
Author(s):  
Shoja Ansari ◽  
Ahmad Zamani

<p>In this paper the short-term seismic deformation of Iran is determined by the earthquake moment tensor summation. The study areas include the Alborz, Kopeh-Dagh, eastern Iran, Makran and Zagros orogenic belts. The spatial distribution and focal mechanisms of the earthquakes delineate the deformation zones. The mean directions of the P and T axes are determined by the equal area projection of the seismic moment tensors. The orientations of the P-axes are dominantly correlated with the NE crustal motion of Iran relative to Eurasia. The average strain rates are calculated in all of the regions. The maximum shear strain and dilatation rates are defined by the eigenvalues of the average strain rate tensors. The dilatation rate indicates that not only the dominant compression but also the subsidiary tension affects the Alborz and Makran orogenic belts. The velocity tensor components discriminate the vertical thickening and thinning of the crust in some regions of Iran. The seismic deformation rates, which are determined by the velocity tensors, are smaller than the geodetic deformation rates. In the high seismic deformation zones, such as the eastern Iran and Alborz, the geodetic deformation rate is comparable with the seismic deformation rate. Our results indicate that the NW Zagros and Kopeh-Dagh have the lowest seismic deformation rates. The seismic shortening rate increases from NW to SE in the Zagros orogenic belt. The seismic deformation orientations are different from the P-axes, probably due to the lateral translation. The maximum percentage of the seismic deformation in the study areas is related to the eastern Iran and the minimum one is related to the Makran orgenic belt. The average shape tensors indicate that the focal mechanisms in the Kopeh-Dagh have the highest internal similarity. The eastern Iran has the largest seismic moment rate, while the central Zagros has the lowest one.</p>


2021 ◽  
Vol 92 (6) ◽  
pp. 3460-3470
Author(s):  
Zoya Zarifi ◽  
Fredrik Hansteen ◽  
Florian Schopper

Abstract A microseismic event with Mw∼0.8 was recorded at the Grane oilfield, offshore Norway, in June 2015. This event is believed to be associated with a failure of the wellbore liner in well 25/11-G-8 A. The failure mechanism has been difficult to explain from drilling parameters and operational logs alone. In this study, we analyzed the detected microseismic event to shed light on the possible cause of this event. We inverted for the seismic moment tensor, analyzed the S/P amplitude ratio and radiation pattern of seismic waves, and then correlated the microseismic data with the drilling reports. The inverted seismic moment indicates a shear-tensile (dislocation) event with a strong positive isotropic component (67% of total energy) accompanied by a positive compensated linear vector dipole (CLVD) and a reverse double-couple (DC) component. Drilling logs show a strong correlation between high pump pressure and the occurrence of several microseismic events during the drilling of the well. The strongest microseismic event (Mw∼0.8) occurred during peak pump pressure of 277 bar. The application of high pump pressure was associated with an attempt to release the liner hanger running tool (RT) in the well, which had been obstructed. Improper setting of the liner hanger could have caused the forces from the RT release to be transferred to the liner and might have resulted in ripping and parting of the pipe. The possible direct impact of the ripped liner with the formation or the likely sudden hydraulic pressure exposure to the formation caused by the liner ripping may explain the estimated isotropic component in the moment tensor inversion in the well. This impact can promote slip along the pre-existing fractures (the DC component). The presence of gas in the formation or the funneled fluid to the formation caused by the liner ripping may explain the CLVD component.


First Break ◽  
2020 ◽  
Vol 38 (4) ◽  
pp. 75-82
Author(s):  
Lindsay Smith-Boughner ◽  
Irina Nizkous ◽  
Ian Leslie ◽  
Sebastian Braganza ◽  
Ian Pinnock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document