Risk of infestation of population by opisthorchiasis causative agent in the middle and lower current of the Iset river. influence of loimopotential of the focus of infestation on the risk values

Author(s):  
A.V. Ushakov ◽  
R.G. Fattakhov ◽  
T.F. Stepanova

The risk of infestation of the population by the opisthorchiasis causative agent in the middle and lower reaches of the Iset River was estimated. Areas with the highest risk of peoples infection by Opisthorchis felineus’ metacercaria are identified. These territories are confined to the zones of removal of the opisthorchiasis causative agent, which are river beds and large water bodies that constantly connect with rivers. Steady risk of infection of the population is determined by the loimopotential of the opisthorchiasis natural focus. The general infestation of juveniles fishes in the middle and lower current of the Iset River made 9,9 %, annuals – 21,5 %, two-year-olds – 19,5 %.

Author(s):  
P. Hirani ◽  
S. Balivada ◽  
R. Chauhan ◽  
G. Shaikh ◽  
L. Murthy ◽  
...  

2011 ◽  
Vol 38 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Rodrigo Cauduro Dias Paiva ◽  
Diogo Costa Buarque ◽  
Robin T. Clarke ◽  
Walter Collischonn ◽  
Daniel Gustavo Allasia

Author(s):  
Fangfang Zhang ◽  
Junsheng Li ◽  
Qian Shen ◽  
Bing Zhang ◽  
Huping Ye ◽  
...  

Surface water distribution extracted from remote sensing data has been used in water resource assessment, coastal management, and environmental change studies. Traditional manual methods for extracting water bodies cannot satisfy the requirements for mass processing of remote sensing data; therefore, accurate automated extraction of such water bodies has remained a challenge. The histogram bimodal method (HBM) is a frequently used objective tool for threshold selection in image segmentation. The threshold is determined by seeking twin peaks, and the valley values between them; however, automatically calculating the threshold is difficult because complex surfaces and image noise which lead to not perfect twin peaks (single or multiple peaks). We developed an operational automated water extraction method, the modified histogram bimodal method (MHBM). The MHBM defines the threshold range of water extraction through mass static data; therefore, it does not require the identification of twin histogram peaks. It then seeks the minimum values in the threshold range to achieve automated threshold. We calibrated the MHBM for many lakes in China using Landsat 8 Operational Land Imager (OLI) images, for which the relative error (RE) and squared correlation coefficient (R2) for threshold accuracy were found to be 2.1% and 0.96, respectively. The RE and root-mean-square error (RMSE) for the area accuracy of MHBM were 0.59% and 7.4 km2. The results show that the MHBM could easily be applied to mass time-series remote sensing data to calculate water thresholds within water index images and successfully extract the spatial distribution of large water bodies automatically.


2020 ◽  
Vol 119 (12) ◽  
pp. 4135-4141
Author(s):  
Susanne Reier ◽  
Elisabeth Haring ◽  
Florian Billinger ◽  
Hubert Blatterer ◽  
Michael Duda ◽  
...  

AbstractAvian schistosomes are of medical and veterinary importance as they are responsible for the annually occurring cercarial dermatitis outbreaks. For Austria, so far, only Trichobilharzia szidati Neuhaus 1952 was confirmed on species level as causative agent of cercarial dermatitis. Here we present the first record of Trichobilharzia franki Müller & Kimmig 1994 in Austria. The species was detected during a survey of digenean trematodes in Upper Austrian water bodies. Furthermore, we provide DNA barcodes of T. franki as well as measurements of several parasite individuals to indicate the intraspecific diversity. We also recommend the usage of an alternative primer pair, since the “standard COI primer pair” previously used for Schistosomatidae amplified an aberrant fragment in the sequence of T. franki. Overall, our study shows how limited our knowledge about occurrence and distribution of avian schistosomes in Austria is and how important it is to acquire such a knowledge to estimate ecological and epidemiological risks in the future.


2020 ◽  
Vol 117 (45) ◽  
pp. 28175-28182
Author(s):  
Robert J. Mooney ◽  
Emily H. Stanley ◽  
William C. Rosenthal ◽  
Peter C. Esselman ◽  
Anthony D. Kendall ◽  
...  

Excessive nitrogen (N) and phosphorus (P) loading is one of the greatest threats to aquatic ecosystems in the Anthropocene, causing eutrophication of rivers, lakes, and marine coastlines worldwide. For lakes across the United States, eutrophication is driven largely by nonpoint nutrient sources from tributaries that drain surrounding watersheds. Decades of monitoring and regulatory efforts have paid little attention to small tributaries of large water bodies, despite their ubiquity and potential local importance. We used a snapshot of nutrient inputs from nearly all tributaries of Lake Michigan—the world’s fifth largest freshwater lake by volume—to determine how land cover and dams alter nutrient inputs across watershed sizes. Loads, concentrations, stoichiometry (N:P), and bioavailability (percentage dissolved inorganic nutrients) varied by orders of magnitude among tributaries, creating a mosaic of coastal nutrient inputs. The 6 largest of 235 tributaries accounted for ∼70% of the daily N and P delivered to Lake Michigan. However, small tributaries exhibited nutrient loads that were high for their size and biased toward dissolved inorganic forms. Higher bioavailability of nutrients from small watersheds suggests greater potential to fuel algal blooms in coastal areas, especially given the likelihood that their plumes become trapped and then overlap in the nearshore zone. Our findings reveal an underappreciated role that small streams may play in driving coastal eutrophication in large water bodies. Although they represent only a modest proportion of lake-wide loads, expanding nutrient management efforts to address smaller watersheds could reduce the ecological impacts of nutrient loading on valuable nearshore ecosystems.


Sign in / Sign up

Export Citation Format

Share Document