scholarly journals THE DEVELOPMENT OF PORTABLE DETECTOR FOR APPLE' S SOLUBLE SOLIDS CONTENT BASED ON VISIBLE AND NEAR INFRARED SPECTRUM

2020 ◽  
pp. 277-288
Author(s):  
Fa Peng ◽  
ShuangXi Liu ◽  
Hao Jiang ◽  
XueMei Liu ◽  
JunLin Mu ◽  
...  

In order to detect the soluble solids content of apples quickly and accurately, a portable apple soluble solids content detector based on USB2000 + micro spectrometer was developed. The instrument can communicate with computer terminal and mobile app through network port, Bluetooth and other ways, which can realize the rapid acquisition of apple spectral information. Firstly, the visible / near-infrared spectrum data and soluble solids content information of 160 apple samples were collected; secondly, the spectral data preprocessing methods were compared, and the results showed that the prediction model of sugar content based on partial least square (PLS) method after average smoothing preprocessing was accurate. The correlation coefficient (RP) and root mean square error (RMSEP) of the prediction model were 0.902 and 0.589 ° Brix, respectively. Finally, on the basis of average smoothing preprocessing, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to optimize the wavelength of spectral data, and PLS model was constructed based on the selected 17 characteristic wavelengths, which can increase the accuracy of soluble solids content prediction model, increase the RP to 0.912, and reduce RMSEP to 0.511 ° Brix. The portable visible / near infrared spectrum soluble solids prediction model based on the instrument and method has high accuracy, and the detector can quickly and accurately measure the soluble solids content of apple.

2016 ◽  
Vol 71 (5) ◽  
pp. 856-865 ◽  
Author(s):  
Shuye Qi ◽  
Seiichi Oshita ◽  
Yoshio Makino ◽  
Donghai Han

Fuji apples from two production areas were separated into six batches by different experimenters. After applying light (500–1010 nm) on the surface of intact ones for their visible and near-infrared (NIR) spectra, destructive samples of three apple components were taken to determine the soluble solids content (SSC). Correlation and regression coefficients between the second Savitzky–Golay derivative of the spectra and SSC were analyzed to reveal that SSC values derived from the different apple components showed significantly different responses in the visible region. However, similar responses, particularly in the NIR section (730–932 nm), remained, including two sugar bands at 890 and 906 nm. On the basis of applying above characteristic bands to remove the interference signals, partial least square (PLS) and multiple linear regression (MLR) showed similar effective performances. According to the analysis of variance (ANOVA) method, sampling methods had significant effect on quantitative accuracy, and the model, using SSC values detected from the outer flesh cuboid (2.5 × 2.5 × 1.5 cm3), provided the best performance with lower root mean square error of prediction and higher correlation coefficient.


2011 ◽  
Vol 361-363 ◽  
pp. 1634-1637 ◽  
Author(s):  
Lu Zhang ◽  
Long Xue ◽  
Mu Hua Liu ◽  
Jing Li

This study demonstrated how VIS-NIR spectroscopy can be used in the quantitative, noninvasive probing of soluble solids content (SSC) of mandarin orange. Total 197 mandarin oranges were divided into calibration set (133 samples) and prediction set (64 samples). Multiple scatter correction (MSC) was used to preprocess the collected visible and near infrared (Vis-NIR) spectra (350-1800nm) of mandarin orange. Partial least square (PLS), interval partial least square (IPLS) and synergy interval partial least square (SIPLS) methods were applied for constructing predictive models of SSC. Experimental results showed that the optimal SIPLS model obtained with 10 PLS components and the optimal combinations of intervals were number 5,7,8,9. The correlation coefficient (r) between the predicted and actual SSC was 0.9265 and 0.8577 for calibration and prediction set, respectively. The root mean square error of calibration (RMSEC) and prediction (RMSEP) set was 0.4890 and 0.7113, respectively. In conclusion, the combination of Vis-NIR spectroscopy and SIPLS methods can be used to provide a technique of noninvasive, convenient and rapid analysis for SSC in fruit.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuyang Pan ◽  
Laijun Sun ◽  
Guobing Sun ◽  
Panxiang Rong ◽  
Yuncai Lu ◽  
...  

AbstractNeutral detergent fiber (NDF) content was the critical indicator of fiber in corn stover. This study aimed to develop a prediction model to precisely measure NDF content in corn stover using near-infrared spectroscopy (NIRS) technique. Here, spectral data ranging from 400 to 2500 nm were obtained by scanning 530 samples, and Monte Carlo Cross Validation and the pretreatment were used to preprocess the original spectra. Moreover, the interval partial least square (iPLS) was employed to extract feature wavebands to reduce data computation. The PLSR model was built using two spectral regions, and it was evaluated with the coefficient of determination (R2) and root mean square error of cross validation (RMSECV) obtaining 0.97 and 0.65%, respectively. The overall results proved that the developed prediction model coupled with spectral data analysis provides a set of theoretical foundations for NIRS techniques application on measuring fiber content in corn stover.


2021 ◽  
pp. 000370282110279
Author(s):  
Justyna Grabska ◽  
Krzysztof B. Beć ◽  
Sophia Mayr ◽  
Christian W. Huck

We investigated the near-infrared spectrum of piperine using quantum mechanical calculations. We evaluated two efficient approaches, DVPT2//PM6 and DVPT2//ONIOM [PM6:B3LYP/6-311++G(2df, 2pd)] that yielded a simulated spectrum with varying accuracy versus computing time factor. We performed vibrational assignments and unveiled complex nature of the near-infrared spectrum of piperine, resulting from a high level of band convolution. The most meaningful contribution to the near-infrared absorption of piperine results from binary combination bands. With the available detailed near-infrared assignment of piperine, we interpreted the properties of partial least square regression models constructed in our earlier study to describe the piperine content in black pepper samples. Two models were compared with spectral data sets obtained with a benchtop and a miniaturized spectrometer. The two spectrometers implement distinct technology which leads to a profound instrumental difference and discrepancy in the predictive performance when analyzing piperine content. We concluded that the sensitivity of the two instruments to certain types of piperine vibrations is different and that the benchtop spectrometer unveiled higher selectivity. Such difference in obtaining chemical information from a sample can be one of the reasons why the benchtop spectrometer performs better in analyzing the piperine content of black pepper. This evidenced direct correspondence between the features critical for applied near-infrared spectroscopic routine and the underlying vibrational properties of the analyzed constituent in a complex sample.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 302
Author(s):  
Konni Biegert ◽  
Daniel Stöckeler ◽  
Roy J. McCormick ◽  
Peter Braun

Optical sensor data can be used to determine changes in anthocyanins, chlorophyll and soluble solids content (SSC) in apple production. In this study, visible and near-infrared spectra (729 to 975 nm) were transformed to SSC values by advanced multivariate calibration models i.e., partial least square regression (PLSR) in order to test the substitution of destructive chemical analyses through non-destructive optical measurements. Spectral field scans were carried out from 2016 to 2018 on marked ‘Braeburn’ apples in Southwest Germany. The study combines an in-depth statistical analyses of longitudinal SSC values with horticultural knowledge to set guidelines for further applied use of SSC predictions in the orchard to gain insights into apple carbohydrate physiology. The PLSR models were investigated with respect to sample size, seasonal variation, laboratory errors and the explanatory power of PLSR models when applied to independent samples. As a result of Monte Carlo simulations, PLSR modelled SSC only depended to a minor extent on the absolute number and accuracy of the wet chemistry laboratory calibration measurements. The comparison between non-destructive SSC determinations in the orchard with standard destructive lab testing at harvest on an independent sample showed mean differences of 0.5% SSC over all study years. SSC modelling with longitudinal linear mixed-effect models linked high crop loads to lower SSC values at harvest and higher SSC values for fruit from the top part of a tree.


2011 ◽  
Vol 48-49 ◽  
pp. 1358-1362
Author(s):  
Xiao Mei Lin ◽  
Juan Wang ◽  
Qing Hua Yao

Spectrum signal may contain many peaks or mutations and noise also is not smooth white noise, to this kind of signal analysis, must do signal pretreatment, remove part of signal and extract useful part of signal.Based on the data of blood glucose near-infrared spectrum as the research object to explore the application of wavelet transform in the near infrared spectrum signal denoising, and through the simulation results show that using wavelet analysis of near infrared spectral data pretreatment than the traditional Fourier method can be higher precision of prediction.


Sign in / Sign up

Export Citation Format

Share Document