Nondestructive Detection of Soluble Solids Content of Nanfeng Mandarin Orange Using VIS-NIR Spectroscopy

2011 ◽  
Vol 361-363 ◽  
pp. 1634-1637 ◽  
Author(s):  
Lu Zhang ◽  
Long Xue ◽  
Mu Hua Liu ◽  
Jing Li

This study demonstrated how VIS-NIR spectroscopy can be used in the quantitative, noninvasive probing of soluble solids content (SSC) of mandarin orange. Total 197 mandarin oranges were divided into calibration set (133 samples) and prediction set (64 samples). Multiple scatter correction (MSC) was used to preprocess the collected visible and near infrared (Vis-NIR) spectra (350-1800nm) of mandarin orange. Partial least square (PLS), interval partial least square (IPLS) and synergy interval partial least square (SIPLS) methods were applied for constructing predictive models of SSC. Experimental results showed that the optimal SIPLS model obtained with 10 PLS components and the optimal combinations of intervals were number 5,7,8,9. The correlation coefficient (r) between the predicted and actual SSC was 0.9265 and 0.8577 for calibration and prediction set, respectively. The root mean square error of calibration (RMSEC) and prediction (RMSEP) set was 0.4890 and 0.7113, respectively. In conclusion, the combination of Vis-NIR spectroscopy and SIPLS methods can be used to provide a technique of noninvasive, convenient and rapid analysis for SSC in fruit.

2016 ◽  
Vol 71 (5) ◽  
pp. 856-865 ◽  
Author(s):  
Shuye Qi ◽  
Seiichi Oshita ◽  
Yoshio Makino ◽  
Donghai Han

Fuji apples from two production areas were separated into six batches by different experimenters. After applying light (500–1010 nm) on the surface of intact ones for their visible and near-infrared (NIR) spectra, destructive samples of three apple components were taken to determine the soluble solids content (SSC). Correlation and regression coefficients between the second Savitzky–Golay derivative of the spectra and SSC were analyzed to reveal that SSC values derived from the different apple components showed significantly different responses in the visible region. However, similar responses, particularly in the NIR section (730–932 nm), remained, including two sugar bands at 890 and 906 nm. On the basis of applying above characteristic bands to remove the interference signals, partial least square (PLS) and multiple linear regression (MLR) showed similar effective performances. According to the analysis of variance (ANOVA) method, sampling methods had significant effect on quantitative accuracy, and the model, using SSC values detected from the outer flesh cuboid (2.5 × 2.5 × 1.5 cm3), provided the best performance with lower root mean square error of prediction and higher correlation coefficient.


2020 ◽  
pp. 277-288
Author(s):  
Fa Peng ◽  
ShuangXi Liu ◽  
Hao Jiang ◽  
XueMei Liu ◽  
JunLin Mu ◽  
...  

In order to detect the soluble solids content of apples quickly and accurately, a portable apple soluble solids content detector based on USB2000 + micro spectrometer was developed. The instrument can communicate with computer terminal and mobile app through network port, Bluetooth and other ways, which can realize the rapid acquisition of apple spectral information. Firstly, the visible / near-infrared spectrum data and soluble solids content information of 160 apple samples were collected; secondly, the spectral data preprocessing methods were compared, and the results showed that the prediction model of sugar content based on partial least square (PLS) method after average smoothing preprocessing was accurate. The correlation coefficient (RP) and root mean square error (RMSEP) of the prediction model were 0.902 and 0.589 ° Brix, respectively. Finally, on the basis of average smoothing preprocessing, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to optimize the wavelength of spectral data, and PLS model was constructed based on the selected 17 characteristic wavelengths, which can increase the accuracy of soluble solids content prediction model, increase the RP to 0.912, and reduce RMSEP to 0.511 ° Brix. The portable visible / near infrared spectrum soluble solids prediction model based on the instrument and method has high accuracy, and the detector can quickly and accurately measure the soluble solids content of apple.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Lin Zhang ◽  
Baohua Zhang ◽  
Jun Zhou ◽  
Baoxing Gu ◽  
Guangzhao Tian

Uninformative biological variability elimination methods were studied in the near-infrared calibration model for predicting the soluble solids content of apples. Four different preprocessing methods, namely, Savitzky-Golay smoothing, multiplicative scatter correction, standard normal variate, and mean normalization, as well as their combinations were conducted on raw Fourier transform near-infrared spectra to eliminate the uninformative biological variability. Subsequently, robust calibration models were established by using partial least squares regression analysis and wavelength selection algorithms. Results indicated that the partial least squares calibration models with characteristic variables selected by CARS method coupled with preprocessing of Savitzky-Golay smoothing and multiplicative scatter correction had a considerable potential for predicting apple soluble solids content regardless of the biological variability.


2020 ◽  
Vol 145 ◽  
pp. 01037
Author(s):  
Guifeng Li ◽  
Ni Yan ◽  
Lu Yuan ◽  
Jianhu Wu ◽  
Junjie Du ◽  
...  

The near-infrared (NIR) spectroscopy combined with partial least square regression (PLS) were applied for the prediction of the alcohol content of jujube wine. The NIR spectroscopy was used to collect the spectral data of the jujube wine samples during fermentation and the data were used to establish the quantitative model of alcohol content to achieve rapid on-line detection. The NIR spectroscopy in the range of 950 to 1650 nm from jujube wine were collected and pre-treated by MSC (Multiplicative Scatter Correction) and FD (First Derivative). The alcohol content was measured with alcohol meter. Spectral wavelength selection and latent variables were optimized for the lowest root mean square errors. The results show that the FD - PLS model, which yielded R2 of 0.9246 and RMSEC of 0.6572, is superior to the MSC- PLS model. Results confirmed that NIR spectroscopy is a promising technique for routine assessment of alcohol content of jujube wine and is a viable and advantageous alternative to the chemical procedures involving laborious extractions. The feasibility of the method was thus verified.


2014 ◽  
Vol 07 (06) ◽  
pp. 1350065 ◽  
Author(s):  
Yande Liu ◽  
Yanrui Zhou ◽  
Yuanyuan Pan

Variable selection is applied widely for visible-near infrared (Vis-NIR) spectroscopy analysis of internal quality in fruits. Different spectral variable selection methods were compared for online quantitative analysis of soluble solids content (SSC) in navel oranges. Moving window partial least squares (MW-PLS), Monte Carlo uninformative variables elimination (MC-UVE) and wavelet transform (WT) combined with the MC-UVE method were used to select the spectral variables and develop the calibration models of online analysis of SSC in navel oranges. The performances of these methods were compared for modeling the Vis-NIR data sets of navel orange samples. Results show that the WT-MC-UVE methods gave better calibration models with the higher correlation coefficient (r) of 0.89 and lower root mean square error of prediction (RMSEP) of 0.54 at 5 fruits per second. It concluded that Vis-NIR spectroscopy coupled with WT-MC-UVE may be a fast and effective tool for online quantitative analysis of SSC in navel oranges.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1078
Author(s):  
Shagor Sarkar ◽  
Jayanta Kumar Basak ◽  
Byeong Eun Moon ◽  
Hyeon Tae Kim

Linear partial least square and non-linear support vector machine regression analysis with various preprocessing techniques and their combinations were used to determine the soluble solids content of hardy kiwi fruits by a handheld, portable near-infrared spectroscopy. Fruits of four species, namely Autumn sense (A), Chungsan (C), Daesung (D), and Green ball (Gb) were collected from five different areas of Gwangyang (G), Muju (M), Suwon (S), Wonju (Q), and Yeongwol (Y) in South Korea. The dataset for calibration and prediction was prepared based on each area, species, and in combination. Half of the dataset of each area, species, and combined dataset was used as calibrated data and the rest was used for model validation. The best prediction correlation coefficient ranges between 0.67 and 0.75, 0.61 and 0.77, and 0.68 for the area, species, combined dataset, respectively using partial least square regression (PLSR) method with different preprocessing techniques. On the other hand, the best correlation coefficient of predictions using the support vector machine regression (SVM-R) algorithm was 0.68 and 0.80, 0.62 and 0.79, and 0.74 for the area, species, and combined dataset, respectively. In most cases, the SVM-R algorithm produced better results with Autoscale preprocessing except G area and species Gb, whereas the PLS algorithm shows a significant difference in calibration and prediction models for different preprocessing techniques. Therefore, the SVM-R method was superior to the PLSR method in predicting soluble solids content of hardy kiwi fruits and non-linear models may be a better alternative to monitor soluble solids content of fruits. The finding of this research can be used as a reference for the prediction of hardy kiwi fruits soluble solids content as well as harvesting time with better prediction models.


Sign in / Sign up

Export Citation Format

Share Document