scholarly journals Estimating of bearing capacity of subsoil under shallow foundations related to European Standards

2013 ◽  
Vol 12 (3) ◽  
pp. 113-120
Author(s):  
Krzysztof Nepelski

paper presents the calculation method of bearing capacity based on European Standards. The analysis of bearing capacity depends on the strength parameters of soil. Results were presented as a graph "bearing capacity" - "strength parameter". All of the results were compare to Polish Standards. Minimal dimensions of foundation were calculated for every bearing capacity. The design value of an action was calculated on the basis of European and Polish Standards.

2018 ◽  
Vol 69 (6) ◽  
pp. 1352-1354
Author(s):  
Anamaria Feier ◽  
Oana Roxana Chivu

The problem of corrosion for old steel bridges in operation is often solved by direct replacement of elements or structure. Only a few studies have been done to determine the efforts influenced by corrosion in those elements. In general, it is considered that a corroded element has exceeded the bearing capacity and should be replaced, but if the corroded element is secondary it could be treated and kept. A factor in the rehabilitation of an old steel bridge in operation is the aspect of structure. If the structure is corroded, rehabilitation decision is taken is easier. Lamellar tearing describes the cracking that occurs beneath the weld and can be characterized as a brittle failure of steel, in the direction perpendicular to the plane of rolling. The paper presents a comprehensive study on lamellar tearing and summarizes some conclusions about the prevention of them. The conclusions will be exemplified in the case of a railway bridge, with a main truss girder. The paper presents also some observations regarding the stress analysis in fillet welds, resulting from the engineering practice.


2019 ◽  
Vol 23 (5) ◽  
pp. 2158-2174 ◽  
Author(s):  
He Zhang ◽  
Pingzhou Cao ◽  
Kai Wu ◽  
Chao Xu ◽  
Lijian Ren

Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Svetlana Melentijevic

AbstractThe presence of the groundwater level (GWL) at the rock mass may significantly affect the mechanical behavior, and consequently the bearing capacity. The water particularly modifies two aspects that influence the bearing capacity: the submerged unit weight and the overall geotechnical quality of the rock mass, because water circulation tends to clean and open the joints. This paper is a study of the influence groundwater level has on the ultimate bearing capacity of shallow foundations on the rock mass. The calculations were developed using the finite difference method. The numerical results included three possible locations of groundwater level: at the foundation level, at a depth equal to a quarter of the footing width from the foundation level, and inexistent location. The analysis was based on a sensitivity study with four parameters: foundation width, rock mass type (mi), uniaxial compressive strength, and geological strength index. Included in the analysis was the influence of the self-weight of the material on the bearing capacity and the critical depth where the GWL no longer affected the bearing capacity. Finally, a simple approximation of the solution estimated in this study is suggested for practical purposes.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Mohammad Mahdi Hajitaheriha ◽  
Davood Akbarimehr ◽  
Amin Hasani Motlagh ◽  
Hossein Damerchilou

Author(s):  
M. A. Millán ◽  
R. Galindo ◽  
A. Alencar

AbstractCalculation of the bearing capacity of shallow foundations on rock masses is usually addressed either using empirical equations, analytical solutions, or numerical models. While the empirical laws are limited to the particular conditions and local geology of the data and the application of analytical solutions is complex and limited by its simplified assumptions, numerical models offer a reliable solution for the task but require more computational effort. This research presents an artificial neural network (ANN) solution to predict the bearing capacity due to general shear failure more simply and straightforwardly, obtained from FLAC numerical calculations based on the Hoek and Brown criterion, reproducing more realistic configurations than those offered by empirical or analytical solutions. The inputs included in the proposed ANN are rock type, uniaxial compressive strength, geological strength index, foundation width, dilatancy, bidimensional or axisymmetric problem, the roughness of the foundation-rock contact, and consideration or not of the self-weight of the rock mass. The predictions from the ANN model are in very good agreement with the numerical results, proving that it can be successfully employed to provide a very accurate assessment of the bearing capacity in a simpler and more accessible way than the existing methods.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Veljko Rupar ◽  
Vladimir Čebašek ◽  
Vladimir Milisavljević ◽  
Dejan Stevanović ◽  
Nikola Živanović

This paper presents a methodology for determining the uniaxial and triaxial compressive strength of heterogeneous material composed of dacite (D) and altered dacite (AD). A zone of gradual transition from altered dacite to dacite was observed in the rock mass. The mechanical properties of the rock material in that zone were determined by laboratory tests of composite samples that consisted of rock material discs. However, the functional dependence on the strength parameter alteration of the rock material (UCS, intact UCS of the rock material, and mi) with an increase in the participation of “weaker” rock material was determined based on the test results of uniaxial and triaxial compressive strength. The participation of altered dacite directly affects the mode and mechanism of failure during testing. Uniaxial compressive strength (σciUCS) and intact uniaxial compressive strength (σciTX) decrease exponentially with increased AD volumetric participation. The critical ratio at which the uniaxial compressive strength of the composite sample equals the strength of the uniform AD sample was at a percentage of 30% AD. Comparison of the obtained exponential equation with practical suggestions shows a good correspondence. The suggested methodology for determining heterogeneous rock mass strength parameters allows us to determine the influence of rock material heterogeneity on the values σciUCS, σciTX, and constant mi. Obtained σciTX and constant mi dependences define more reliable rock material strength parameter values, which can be used, along with rock mass classification systems, as a basis for assessing rock mass parameters. Therefore, it is possible to predict the strength parameters of the heterogeneous rock mass at the transition of hard (D) and weak rock (AD) based on all calculated strength parameters for different participation of AD.


Sign in / Sign up

Export Citation Format

Share Document