scholarly journals FUNCTIONALIZATION OF CELLULOSE AND CHITOSAN IN IONIC LIQUIDS

2020 ◽  
Vol 54 (9-10) ◽  
pp. 857-868
Author(s):  
CRISTINA STEFANESCU ◽  
WILLIAM H. DALY ◽  
IOAN I. NEGULESCU

Chemistry of cellulose in ionic liquids has been briefly reviewed and, accordingly, the phthalation of chitosan in these ionic solvents has been investigated. Chitosan (K) has been reacted at 100 °C for 4 hours with phthalic anhydride (PA) in ionic liquids 1-butyl-3-methylimidazolium acetate (BMIMAc) and 1-butyl-3-methylimidazolium chloride (BMIMCl) in the presence of bases, pyridine and 1,4-diazobicyclo[2.2.2] octane (DABCO), or the phthalation has been catalyzed by N-bromosuccinimide (NBS). Depending on the nature of the reaction components, the samples were prepared with molar ratios of PA to anhydroglucose unit (PA:K) from 3:1 to 10:1, including molar ratios of bases or catalyst to chitosan, ranging also from 3:1 to 10:1. All the reaction products were soluble in dimethyl sulfoxide and dimethylformamide. Both functional groups of chitosan units, -OH and -NH2 , reacted, resulting in FTIR confirmed products containing esters, amide, and imide functional groups. Heating the isolated phthalated chitosan products to 200 °C led to cyclization with the formation of imide groups and elimination of water. When bases controlled the reactions, the highest degrees of substitution of DABCO product (DS = 0.80) was slightly higher than the highest DC of the reaction products obtained in the presence of pyridine (DS = 0.77). However, the presence of the Nbromosuccinimide catalyst in the system led to an increase of the degree of substitution of the functional groups of chitosan (DS = 1.75), compared with that listed above for the products resulted when the reactions were carried out in the presence of bases. The thermal stability of the chitosan derivatives obtained in the presence of a base depended primarily upon the nature of the counter ion of the ionic liquid. When the reaction was conducted in the acetate ionic liquid BMIMAc, the phthalated chitosan exhibited a lower thermal stability than that of chitosan, while when the chloride ionic liquid BMIMCl was used as solvent, the thermal stability of the phthalated chitosan increased, indicating an interference of the ionic solvents in the mechanisms of reactions. Nevertheless, the thermal behavior of the phthalated products obtained in reactions catalyzed by NBS may be correlated with the increasing degrees of substitution achieved with increased catalyst concentrations: a higher DS resulted in a higher weight loss at higher temperatures.

2016 ◽  
Vol 18 (9) ◽  
pp. 6618-6636 ◽  
Author(s):  
Benedikt Uhl ◽  
Maral Hekmatfar ◽  
Florian Buchner ◽  
R. Jürgen Behm

The interaction of lithium, [BMP][TFSA] and their mixture with rutile TiO2(110), the thermal stability of the adlayers and the resulting reaction products are investigated under UHV conditions by STM and XPS.


2013 ◽  
Vol 25 (8) ◽  
pp. 4779-4782 ◽  
Author(s):  
W.D. Liang ◽  
H.F. Li ◽  
G.J. Gou ◽  
A.Q. Wang

Author(s):  
Yong Huang ◽  
Zhichao Chen ◽  
Jacob M. Crosthwaite ◽  
Sudhir N.V.K. Aki ◽  
Joan F. Brennecke

2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


2017 ◽  
Vol 656 ◽  
pp. 70-84 ◽  
Author(s):  
D. Blanco ◽  
P. Oulego ◽  
D. Ramos ◽  
B. Fernández ◽  
J.M. Cuetos

ARKIVOC ◽  
2012 ◽  
Vol 2012 (8) ◽  
pp. 262-281 ◽  
Author(s):  
Paweł Borowiecki ◽  
Marcin Poterała ◽  
Jan Maurin ◽  
Monika Wielechowska ◽  
Jan Plenkiewicz

2016 ◽  
Vol 86 (6) ◽  
pp. 1314-1318 ◽  
Author(s):  
L. I. Voronchikhina ◽  
O. E. Zhuravlev ◽  
N. V. Verolainen ◽  
N. I. Krotova

2021 ◽  
Author(s):  
Jian Sun ◽  
Xinyue Wang ◽  
huajing Gao ◽  
Feng Chen ◽  
Xing-Bao Wang ◽  
...  

By adding different proportions of N-buthylimidazole and carboxyethylthiosuccinic acid (CETSA), three hybrid systems of ionic liquids were synthesized and named ILHS1, ILHS2 and ILHS3. By using weight loss method, electrochemical...


2019 ◽  
Vol 166 (6) ◽  
pp. A944-A952 ◽  
Author(s):  
Minh Phuong Do ◽  
Pauline J. Fischer ◽  
Arun Nagasubramanian ◽  
Jan Geder ◽  
Fritz E. Kühn ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 426
Author(s):  
Murli Manohar ◽  
Dukjoon Kim

This present work focused on the aromatic polymer (poly (1,4-phenylene ether-ether-sulfone); SPEES) interconnected/ cross-linked with the aliphatic monomer (2-acrylamido-2-methyl-1-propanesulfonic; AMPS) with the sulfonic group to enhance the conductivity and make it flexible with aliphatic chain of AMPS. Surprisingly, it produced higher conductivity than that of other reported work after the chemical stability was measured. It allows optimizing the synthesis of polymer electrolyte membranes with tailor-made combinations of conductivity and stability. Membrane structure is characterized by 1H NMR and FT-IR. Weight loss of the membrane in Fenton’s reagent is not too high during the oxidative stability test. The thermal stability of the membrane is characterized by TGA and its morphology by SEM and SAXS. The prepared membranes improved proton conductivity up to 0.125 Scm−1 which is much higher than that of Nafion N115 which is 0.059 Scm−1. Therefore, the SPEES-AM membranes are adequate for fuel cell at 50 °C with reduced relative humidity (RH).


Sign in / Sign up

Export Citation Format

Share Document