Tunable dual-band perfect metamaterial absorber based on monolayer graphene arrays as refractive index sensor

2020 ◽  
Vol 59 (9) ◽  
pp. 095002 ◽  
Author(s):  
Jian Li ◽  
Qinghua Liao ◽  
Haoming Li ◽  
Wenxing Liu ◽  
Tianbao Yu ◽  
...  
2016 ◽  
Vol 24 (2) ◽  
pp. 1518 ◽  
Author(s):  
Gang Yao ◽  
Furi Ling ◽  
Jin Yue ◽  
Chunya Luo ◽  
Jie Ji ◽  
...  

Sensors ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 7454-7461 ◽  
Author(s):  
Heli Ma ◽  
Kun Song ◽  
Liang Zhou ◽  
Xiaopeng Zhao

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 533 ◽  
Author(s):  
Yunping Qi ◽  
Yu Zhang ◽  
Chuqin Liu ◽  
Ting Zhang ◽  
Baohe Zhang ◽  
...  

In this paper, we demonstrate a tunable periodic hourglass-shaped graphene arrays absorber in the infrared (IR) and terahertz (THz) frequency bands. The effects of graphene geometric parameters, chemical potentials, periods, and incident angles on the pure absorption characteristics are studied by using the Finite Difference Time Domain (FDTD) method. In addition, this paper also analyzes the pure absorption characteristics of bilayer graphene arrays. The simulation results show that the maximum absorption reaches 38.2% for the monolayer graphene structure. Furthermore, comparing the bilayer graphene structure with the monolayer structure under the same conditions shows that the bilayer structure has a tunable dual-band selective absorption effect and has a higher maximum absorption of 41.7%. Moreover, it was found that there are dual-band tunable absorption peaks at 21.6   μ m and 36.3   μ m with the maximum absorption of 41.7% and 11%. The proposed structure is a convenient method which could be used in the design of graphene-based optoelectronic devices, biosensors, and environmental monitors.


2018 ◽  
Vol 7 (2) ◽  
pp. 25-27
Author(s):  
M. C. Tran ◽  
T. T. H. Phuong

This paper presents a study of a novel absorber structure based on two-dielectric-layers, two perfect absorption frequency bands at K band (f1 = 26.5 GHz and f2 = 28.6 GHz) go under observance. The study of the dependence of absorption and frequency on relative distance between the layers of material and the material structure parameters are discussed. 


Sign in / Sign up

Export Citation Format

Share Document