scholarly journals Ceramic-matrix composite materials for the diamond abrasive tools manufacture

2017 ◽  
Vol 117 ◽  
pp. 212-224
Author(s):  
D. O. Fedorenko ◽  
V. A. Fedorovich ◽  
E. Yu. Fedorenko ◽  
K. B. Daineko

The results of the development of high-resource ceramic diamond abrasive tool, the design of which was carried out using computer simulation of processes, that accompanying its manufacturing and grinding in the mode of rational self-sharpening, is presented. According to the results of simulation experiments, the composition of the diamond-bearing layer was developed and the instrument with the use of a low-melting ceramic bond with the given properties were made.

Author(s):  
Olena Fedorenko ◽  
Larysa Yashchenko ◽  
Dmytro Fedorenko ◽  
Volodymyr Fedorovych ◽  
Oleksandr Koniev

Research is aimed at creating high-resource diamond-abrasive tools with a large-pore structure of the working layer, the use of which reduces the occurrence of grinding defects when processing materials sensitive to overheating. The formation of an open structure of the working layer ensures effective chip removal, which excludes a decrease in the сutting ability of the tool due to contamination with grinding sludge and creates favorable conditions for intensifying the processing of materials when using high-speed cutting modes. As part of the research, low-melting glass-ceramic binders for diamond-abrasive tools have been developed, which make it possible to increase the tool service life  due to the prevention of diamond grains premature destruction and the creation of a large-pore open structure of the working layer. Using a set of calculated data about the main characteristics of glass compositions by factor planning means, the dependences «composition - properties» were determined and the area of optimal compositions of glass-ceramic bonds was established, which ensure sintering of a diamond-containing composite at a temperature of 550–650 °C. The efficiency of the use of alumino-silicate microspheres of technogenic origin as a structure-forming filler providing the formation of a large-pore structure is shown. The features of the chemical and phase composition of the technogenic spheres recovered from the fly ash of the Krivoy Rog TPP have been determined. It has been established that when the diamond-bearing layer of the tool is sintered in the shell of the ash spheres, crystalline new formations with high hardness (hercynite, mullite, maghemite, spinel) are formed. Using ash spheres and developed low-melting binders, which include up to 30 mass. % of glass waste, the laboratory samples of diamond-containing composites with open porosity of 45-50% were made. Studies of their microstructure and morphological features made it possible to determine the pore size (130-200 μm) and establish that during grinding, partial destruction of ash spheres occurs with the formation of additional cutting elements, which increases the tool cutting ability. The research results indicate the advisability of using the proposed approach for selection of the diamond-ceramic composite components and the modes of heat treatment of the diamond-bearing layer when creating a tool. This approach will significantly expand the possibilities of manufacturing large-pore diamond-abrasive tools with a high service life at minimal material costs and will improve the processing of parts made of difficult-to-machine materials.


2015 ◽  
Vol 799-800 ◽  
pp. 266-271 ◽  
Author(s):  
Evgeniy Georgiyevich Sokolov ◽  
Vladimir Petrovich Artemyev

It was researched the interaction of composite brazing alloy Sn-Cu-Co-W with surface of diamond during formation of a diamond-bearing layer on abrasive tool. It was determined the influence of the composite brazing alloy components on wetting of diamond grains and their subsequent retention in metal matrix. The prototypes of stone-machining routers were manufactured with use of the designed composite brazing alloy. Thickness of obtained diamond containing coating is even over the entire surface is 2 mm. Due to the high viscosity of the composite brazing alloy it is well retained on the contoured surface of the substrate including the vertical sections.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 151-156
Author(s):  
Shyam ◽  
M. Shanmuka Srinivas ◽  
Kishor Kumar Gajrani ◽  
A. Udayakumar ◽  
M. Ravi Sankar

2020 ◽  
Vol 299 ◽  
pp. 37-42
Author(s):  
O.A. Fomina ◽  
Andrey Yu. Stolboushkin

A model of the transition layer between the shell and the core of a ceramic matrix composite from coal waste and clay has been developed. The chemical, granulometric and mineral compositions of the beneficiation of carbonaceous mudstones and clay were studied. The technological and ceramic properties of raw materials for the samples manufacturing were determined. The method of manufacturing multilayer ceramic samples from coal waste, clay and their mixture is given. The number of transition layers in the contact zone between the clay shell and the core from coal wastes is determined. The deformation and swelling phenomena of model samples from coal wastes, clay, and their mixtures were revealed at the firing temperature of more than 1000 °C. The formation of a reducing ambient in the center of the sample with insufficient air flow is shown. The influence of the carbonaceous particles amount and the ferrous form iron oxide in the coal wastes on the processes of expansion of multilayer samples during firing has been established.


2017 ◽  
Vol 54 (2) ◽  
pp. 205-214 ◽  
Author(s):  
K. Balamurugan ◽  
M. Uthayakumar ◽  
S. Sankar ◽  
U. S. Hareesh ◽  
K. G. K. Warrier

Sign in / Sign up

Export Citation Format

Share Document