scholarly journals Lifetime and Energy Efficiency Improvement Techniques for Hierarchical Networks

The detection points are the detection points in the space of network. The properties of detection points include cost effective materials and longer battery capacity. WSN can span variety of applications like sensing of data related to environment entities, detection of enemy vehicles. Lifetime ratio defines the efficiency of the WSN network operation. There are multiple techniques which can help in improvement of Network Lifetime (NL) spanning from transmission nature, data connections, formation of System and time scheduling. This paper provides the analysis of how energy consumption happens and its effect on lifetime ratio. LEACH and CHEF algorithms responsible for hierarchical kind of routing are discussed in detail with simulation results. The parameters used for comparison includes delay, hops, consumption of energy. Non-Hole detection points, Hole detection points, Non-Hole to Hole Ratio, residual energy, routing overhead and throughput.

2020 ◽  
pp. 351-371 ◽  
Author(s):  
Hassan El Alami ◽  
Abdellah Najid

WSNs have many applications in modern life. Thus, optimization of the network operation is required to maximize its lifetime. The energy is a major issue in order to increase the lifetime of WSNs. The clustering algorithm is one of the proposed algorithms to enhance the lifetime of WSNs. The operation of the clustering algorithm is divided into cluster heads (CHs) selection and cluster formation. However, most of the previous works have focused on CHs selection, and have not considered the cluster formation process, which is the important issue in clustering algorithm based routing schemes, and it can drastically affect the lifetime of WSNs. In this paper, a Fuzzy Logic based Clustering Algorithm for WSN (CAFL) has been proposed to improve the lifetime of WSNs. This approach uses fuzzy logic for CHs selection and clusters formation processes by using residual energy and closeness to the sink as fuzzy inputs in terms of CH selection, and residual energy of CH and closeness to CHs as fuzzy inputs in terms of clusters formation. Simulation results justify its efficiency.


2010 ◽  
Vol 40-41 ◽  
pp. 448-452 ◽  
Author(s):  
You Rong Chen ◽  
Li Yu ◽  
Qi Fen Dong ◽  
Zhen Hong

The network hub nodes consumed excessive energy and failed prematurely, thus it reduced the network lifetime. In order to solve the problem, distributed lifetime optimized routing algorithm (DLOR) for wireless sensor networks was proposed. Energy for transmitting data and neighbor node residual energy were considered comprehensively. Then new weight function was introduced and distributed asynchronous Bellman-Ford algorithm was also used to construct the shortest routing tree. Finally, data were gathered along the shortest routing tree to sink node. Simulation results show that DLOR algorithm can extend network lifetime and enable cost-effective energy consumption. Under certain conditions, DLOR algorithm outperforms PEDAP, GreedyDijkstra, LET, Ratio-w and Sum-w algorithms.


2014 ◽  
Vol 8 (4) ◽  
pp. 629-666 ◽  
Author(s):  
Katerina Kermeli ◽  
Peter-Hans ter Weer ◽  
Wina Crijns-Graus ◽  
Ernst Worrell

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Abdollahi

Purpose The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer uses only two main windings which result in volume, space, size, weight and cost savings. Also, the proposed unconventional inter-phase transformer (UIPT) with a lower kVA rating (about 2.6% of the load power) compared to the conventional inter-phase transformer results in a more harmonic reduction. Design/methodology/approach To increase rating and reduce the cost and complexity of a multi-pulse rectifier, it is well known that the pulse number must be increased. In some practical cases, a 12-pulse rectifier (12PR) is suggested as a good solution considering its simple structure and low weight. But the 12PR cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore, they must be used with output filters. In this paper, a 12PR is suggested, which consists of a T autotransformer 12PR and a passive harmonic reduction (PHR) based on the UIPT at direct current (DC) link. Findings To show the advantage of this new combination over other solutions, simulation results are used, and then, a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the input current total harmonic distortion (THD) of the suggested 12PR with a PHR based on UIPT is less than 5%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other solutions, it is cost effective, and at the same time, its power factor is near unity, and its rating is 29.92% of the load rating. Therefore, it is obvious that the proposed rectifier is a practical solution for more electric aircrafts. Originality/value The contributions of this paper are summarized as follows. The suggested design uses a retrofit T autotransformer, which meets all technical constraints, and in comparison, with other options, has less rating, weight, volume and cost. In the suggested rectifier, a PHR based on UIPT at its dc link of 12PR is used, which has good technical capabilities and lower ratings. In the PHR based on UIPT, an IPT is used, which has an additional secondary winding and four diodes. This solution leads to a reduction in input current THD and conduction losses of diodes. In full load conditions, the input line current THD and power factor are 4% and 0.99, respectively. The THD is less than 5%, which satisfies IEEE-519 and DO-160G requirements.


Sign in / Sign up

Export Citation Format

Share Document