scholarly journals Development of Deep Learning Algorithm for Brain Tumor Segmentation

Medical imaging is an emerging field in engineering. As traditional way of brain tumor analysis, MRI scanning is the way to identify brain tumor. The core drawback of manual MRI studies conducted by surgeons is getting manual visual errorswhich can lead toofa false identification of tumor boundaries. To avoid such human errors, ultra age engineering adopted deep learning as a new technique for brain tumor segmentation. Deep learning convolution network can be further developed by means of various deep learning models for better performance. Hence, we proposed a new deep learning algorithm development which can more efficiently identifies the types of brain tumors in terms of level of tumor like T1, T2, and T1ce etc. The proposed system can identify tumors using convolution neural network(CNN) which works with the proposed algorithm “Sculptor DeepCNet”. The proposed model can be used by surgeons to identify post-surgical remains (if any) of brain tumors and thus proposed research can be useful for ultra-age neural surgical image assessments. This paper discusses newly developed algorithm and its testing results.

2021 ◽  
pp. 757-765
Author(s):  
Tarang Kumar Barsiya ◽  
Lakshita Bhargava ◽  
Suchitra Agrawal ◽  
Aruna Tiwari ◽  
Amit Saxena

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Siyu Xiong ◽  
Guoqing Wu ◽  
Xitian Fan ◽  
Xuan Feng ◽  
Zhongcheng Huang ◽  
...  

Abstract Background Brain tumor segmentation is a challenging problem in medical image processing and analysis. It is a very time-consuming and error-prone task. In order to reduce the burden on physicians and improve the segmentation accuracy, the computer-aided detection (CAD) systems need to be developed. Due to the powerful feature learning ability of the deep learning technology, many deep learning-based methods have been applied to the brain tumor segmentation CAD systems and achieved satisfactory accuracy. However, deep learning neural networks have high computational complexity, and the brain tumor segmentation process consumes significant time. Therefore, in order to achieve the high segmentation accuracy of brain tumors and obtain the segmentation results efficiently, it is very demanding to speed up the segmentation process of brain tumors. Results Compared with traditional computing platforms, the proposed FPGA accelerator has greatly improved the speed and the power consumption. Based on the BraTS19 and BraTS20 dataset, our FPGA-based brain tumor segmentation accelerator is 5.21 and 44.47 times faster than the TITAN V GPU and the Xeon CPU. In addition, by comparing energy efficiency, our design can achieve 11.22 and 82.33 times energy efficiency than GPU and CPU, respectively. Conclusion We quantize and retrain the neural network for brain tumor segmentation and merge batch normalization layers to reduce the parameter size and computational complexity. The FPGA-based brain tumor segmentation accelerator is designed to map the quantized neural network model. The accelerator can increase the segmentation speed and reduce the power consumption on the basis of ensuring high accuracy which provides a new direction for the automatic segmentation and remote diagnosis of brain tumors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shiqiang Ma ◽  
Jijun Tang ◽  
Fei Guo

Accurate automatic medical image segmentation technology plays an important role for the diagnosis and treatment of brain tumor. However, simple deep learning models are difficult to locate the tumor area and obtain accurate segmentation boundaries. In order to solve the problems above, we propose a 2D end-to-end model of attention R2U-Net with multi-task deep supervision (MTDS). MTDS can extract rich semantic information from images, obtain accurate segmentation boundaries, and prevent overfitting problems in deep learning. Furthermore, we propose the attention pre-activation residual module (APR), which is an attention mechanism based on multi-scale fusion methods. APR is suitable for a deep learning model to help the network locate the tumor area accurately. Finally, we evaluate our proposed model on the public BraTS 2020 validation dataset which consists of 125 cases, and got a competitive brain tumor segmentation result. Compared with the state-of-the-art brain tumor segmentation methods, our method has the characteristics of a small parameter and low computational cost.


Brain tumors are the result of unusual growth and unrestrained cell disunity in the brain. Most of the medical image application lack in segmentation and labeling. Brain tumors can lead to loss of lives if they are not detected early and correctly. Recently, deep learning has been an important role in the field of digital health. One of its action is the reduction of manual decision in the diagnosis of diseases specifically brain tumor diagnosis needs high accuracy, where minute errors in judgment may lead to loss therefore, brain tumor segmentation is an necessary challenge in medical side. In recent time numerous ,methods exist for tumor segmentation with lack of accuracy. Deep learning is used to achieve the goal of brain tumor segmentation. In this work, three network of brain MR images segmentation is employed .A single network is compared to achieve segmentation of MR images using separate network .In this paper segmentation has improved and result is obtained with high accuracy and efficiency.


2021 ◽  
Author(s):  
Arpit Kumar Sharma ◽  
Amita Nandal ◽  
Liang Zhou ◽  
Arvind Dhaka ◽  
Tao Wu

This paper presents the detection of brain tumors by using the VGG16 approach for grading from multiphase MRI images. It also depicts the comparative analysis among several outcomes coming from different baseline neural networks and deep learning configurations. Machine learning directly uses MRI images, with few sequential operations among multiphase MRIs. This paper illustrates the process that influences the potential of the deep learning machine. Neural networks generally involve the convolutional neural networks (CNN) for achieving the optimum enhancement on grading performance. Such processes also include visualization of kernels trained in several layers and visualize few self-learned features attained from CNN. Such research shows the deep learning approach with its applications in brain tumor segmentation. Researchers found difficulty in the automatic segmentation of brain tumors that provide great variability in sizes and shapes. Computed tomography (CT) and magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies, and treatment planning. The problems common to both CT and MR medical images are partial volume effect, different artifacts: example motion artifacts, ring artifacts, etc, and noise due to sensors and related electronic systems. In this paper, we propose an easy and unique segmentation process that provides competitive performance as well as speedy runtime for the evaluation of model performance in terms of loss and accuracy.


2021 ◽  
Author(s):  
Pitchai R ◽  
Supraja P ◽  
Razia Sulthana A ◽  
Veeramakali T

Abstract Segmentation of brain tumors is a daunting process comprising the delineation of heterogeneous cancerous tissues and diffuse types in anatomical representations of the brain. Deep learning techniques have recently made important strides in the segmentation of brain tumors. However, owing to the irregularity of the tumor, most of the deep learning-based segmentation techniques are not used directly for tumor detection. Although recent studies are capable of addressing the irregularity issue and retaining permutation invariance, many approaches struggle to catch the valuable high-dimensional local features of finer resolution. Inspired by the fuzzy learning methods and an analysis of the shortcomings of existing methods, an automated fuzzy neighborhood learning-based 3D segmentation technique has been proposed for the detection of cerebrum tumors in 3D images. In this technique, the fuzzy neighborhood function is deeply integrated with the proposed network architecture. This technique has been evaluated on BRATS 2013dataset. The simulation results show that the proposed brain tumor detection technique is superior to other methods in the diagnosis of brain tumors with the dice coefficient of 0.85 and the Jaccard index of 0.74.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


Sign in / Sign up

Export Citation Format

Share Document