scholarly journals Linear Buckling Analysis of Landing Gear

In an aircraft the landing gear is the most critical system which acts as suspension during landing and take-off. During this, it experiences very large magnitude of impact load which is mostly compressive in nature. Hence, a major concern in this structure is buckling failure. Buckling is a mode of failure in which compressive forces act along the axis of the component. Buckling can cause catastrophic deformation of the component for slight increase in load acting on the body. Many a time buckling is the deciding factor for allowable stress. So, the buckling strength of the material used for landing gear should be sufficiently high enough to resist failure. Good corrosion resistance and low density makes Ti-6Al-4V (also called TC4) the most commonly used material for the landing gear. This paper deals with linear buckling analysis of landing gear and compares the result of three titanium alloys (TC4, Ti-7Al-4Mo, TIMETAL 834) for landing gear. The landing gear assembly is designed in CREO 3.0 and linear buckling analysis is performed in ANSYS 19.2

2014 ◽  
Vol 501-504 ◽  
pp. 2213-2216
Author(s):  
Jian Wan

Combined with the project which a grain silo need be transformed, a new type of silo is put forward. The silo system consists of supporting columns, the silo body and latticed shell roof structure. In view of the force is different between silo shell roof and conventional roof, and silo shell roof prones to buckling failure. The linear and nonlinear buckling analysis was carried out for latticed shell with a diameter of 20m, the results show that the buckling loads obtained by linear buckling analysis is greater than that obtained by nonlinear buckling analysis, and nonlinear analysis is more secure for structures. Through the comparison the rationality and stability of reticulated shell design are verified, finally construction measures of this system are given, and these can provide references for design and construction of similar engineering.


2009 ◽  
Vol 31 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Dao Huy Bich

In the present paper the non-linear buckling analysis of functionally graded spherical shells subjected to external pressure is investigated. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. In the formulation of governing equations geometric non-linearity in all strain-displacement relations of the shell is considered. Using Bubnov-Galerkin's method to solve the problem an approximated analytical expression of non-linear buckling loads of functionally graded spherical shells is obtained, that allows easily to investigate stability behaviors of the shell.


Author(s):  
Kenji Yamamoto ◽  
Hayato Utebi

In order to analyze the buckling behavior of lattice shells stiffened by cables or slender braces without pre-tension, it is necessary to consider the no-compression property of braces. This paper proposes an innovative method of linear buckling analysis that considers the no-compression property of braces. Moreover, in order to examine the proposed method's validity, its results are compared with the results from a nonlinear buckling analysis with geometrical nonlinearity and material nonlinearity to express the no-compression property of braces. The results show that the proposed method can well-predict the buckling behaviors of lattice shells stiffened by tension braces.


Sign in / Sign up

Export Citation Format

Share Document