scholarly journals Medical Big Data Analytics using Machine Learning Algorithms

Artificial intelligence and expert systems plays a key role in modern medicine sciences for disease prediction, surveillance interventions, cost efficiency and better quality of life etc. With the arrival of new web-based data sources and systematic data collection through surveys and medical reporting, there is a need of the hour to develop effective recommendation systems which can support practitioners in better decision-making process. Machine Learning Algorithms (MLA) is a powerful tool which enables computers to learn from data. While many novel developed MLA constantly evolves, there is need to develop more systematic, robust algorithm which can interpret with highest possible accuracy, sensitivity and specificity. The study reviews previously published series on different algorithms their advantages and limitations which shall help make future recommendations for researchers and experts seeking to develop an effective algorithm for predicting the likelihood of various diseases.

2021 ◽  
Vol 218 ◽  
pp. 44-51
Author(s):  
D. Venkata Vara Prasad ◽  
Lokeswari Y. Venkataramana ◽  
P. Senthil Kumar ◽  
G. Prasannamedha ◽  
K. Soumya ◽  
...  

Author(s):  
Manjunath Thimmasandra Narayanapppa ◽  
T. P. Puneeth Kumar ◽  
Ravindra S. Hegadi

Recent technological advancements have led to generation of huge volume of data from distinctive domains (scientific sensors, health care, user-generated data, finical companies and internet and supply chain systems) over the past decade. To capture the meaning of this emerging trend the term big data was coined. In addition to its huge volume, big data also exhibits several unique characteristics as compared with traditional data. For instance, big data is generally unstructured and require more real-time analysis. This development calls for new system platforms for data acquisition, storage, transmission and large-scale data processing mechanisms. In recent years analytics industries interest expanding towards the big data analytics to uncover potentials concealed in big data, such as hidden patterns or unknown correlations. The main goal of this chapter is to explore the importance of machine learning algorithms and computational environment including hardware and software that is required to perform analytics on big data.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3817
Author(s):  
Shi-Jer Lou ◽  
Ming-Feng Hou ◽  
Hong-Tai Chang ◽  
Chong-Chi Chiu ◽  
Hao-Hsien Lee ◽  
...  

No studies have discussed machine learning algorithms to predict recurrence within 10 years after breast cancer surgery. This study purposed to compare the accuracy of forecasting models to predict recurrence within 10 years after breast cancer surgery and to identify significant predictors of recurrence. Registry data for breast cancer surgery patients were allocated to a training dataset (n = 798) for model development, a testing dataset (n = 171) for internal validation, and a validating dataset (n = 171) for external validation. Global sensitivity analysis was then performed to evaluate the significance of the selected predictors. Demographic characteristics, clinical characteristics, quality of care, and preoperative quality of life were significantly associated with recurrence within 10 years after breast cancer surgery (p < 0.05). Artificial neural networks had the highest prediction performance indices. Additionally, the surgeon volume was the best predictor of recurrence within 10 years after breast cancer surgery, followed by hospital volume and tumor stage. Accurate recurrence within 10 years prediction by machine learning algorithms may improve precision in managing patients after breast cancer surgery and improve understanding of risk factors for recurrence within 10 years after breast cancer surgery.


2017 ◽  
Vol 28 ◽  
pp. v518
Author(s):  
H-L. Wong ◽  
T. Luechtefeld ◽  
A. Prawira ◽  
Z. Patterson ◽  
J. Workman ◽  
...  

2020 ◽  
Author(s):  
D.C.L. Handler ◽  
P.A. Haynes

AbstractAssessment of replicate quality is an important process for any shotgun proteomics experiment. One fundamental question in proteomics data analysis is whether any specific replicates in a set of analyses are biasing the downstream comparative quantitation. In this paper, we present an experimental method to address such a concern. PeptideMind uses a series of clustering Machine Learning algorithms to assess outliers when comparing proteomics data from two states with six replicates each. The program is a JVM native application written in the Kotlin language with Python sub-process calls to scikit-learn. By permuting the six data replicates provided into four hundred triplet non redundant pairwise comparisons, PeptideMind determines if any one replicate is biasing the downstream quantitation of the states. In addition, PeptideMind generates useful visual representations of the spread of the significance measures, allowing researchers a rapid, effective way to monitor the quality of those identified proteins found to be differentially expressed between sample states.


Author(s):  
Balasree K ◽  
Dharmarajan K

In rapid development of Big Data technology over the recent years, this paper discussing about the Machine Learning (ML) playing role that is based on methods and algorithms to Big Data Processing and Big Data Analytics. In evolutionary fields and computing fields of developments that both are complementing each other. Big Data: The rapid growth of such data solutions needed to be studied and provided to handle then to gain the knowledge from datasets and extracting values due to the data sets are very high in velocity and variety. The Big data analytics are involving and indicating the appropriate data storage and computational outline that enhanced by using Scalable Machine Learning Algorithms and Big Data Analytics then the analytics to reveal the massive amounts of hidden data’s and secret correlations. This type of Analytic information useful for organizations and companies to gain deeper knowledge, development and getting advantages over the competition. When using this Analytics we can predict the accurate implementation over the data. This paper presented about the detailed review of state-of-the-art developments and overview of advantages and challenges in Machine Learning Algorithms over big data analytics.


Sign in / Sign up

Export Citation Format

Share Document