scholarly journals Machine Learning Algorithms to Predict Recurrence within 10 Years after Breast Cancer Surgery: A Prospective Cohort Study

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3817
Author(s):  
Shi-Jer Lou ◽  
Ming-Feng Hou ◽  
Hong-Tai Chang ◽  
Chong-Chi Chiu ◽  
Hao-Hsien Lee ◽  
...  

No studies have discussed machine learning algorithms to predict recurrence within 10 years after breast cancer surgery. This study purposed to compare the accuracy of forecasting models to predict recurrence within 10 years after breast cancer surgery and to identify significant predictors of recurrence. Registry data for breast cancer surgery patients were allocated to a training dataset (n = 798) for model development, a testing dataset (n = 171) for internal validation, and a validating dataset (n = 171) for external validation. Global sensitivity analysis was then performed to evaluate the significance of the selected predictors. Demographic characteristics, clinical characteristics, quality of care, and preoperative quality of life were significantly associated with recurrence within 10 years after breast cancer surgery (p < 0.05). Artificial neural networks had the highest prediction performance indices. Additionally, the surgeon volume was the best predictor of recurrence within 10 years after breast cancer surgery, followed by hospital volume and tumor stage. Accurate recurrence within 10 years prediction by machine learning algorithms may improve precision in managing patients after breast cancer surgery and improve understanding of risk factors for recurrence within 10 years after breast cancer surgery.

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Shi-Jer Lou ◽  
Ming-Feng Hou ◽  
Hong-Tai Chang ◽  
Hao-Hsien Lee ◽  
Chong-Chi Chiu ◽  
...  

Machine learning algorithms have proven to be effective for predicting survival after surgery, but their use for predicting 10-year survival after breast cancer surgery has not yet been discussed. This study compares the accuracy of predicting 10-year survival after breast cancer surgery in the following five models: a deep neural network (DNN), K nearest neighbor (KNN), support vector machine (SVM), naive Bayes classifier (NBC) and Cox regression (COX), and to optimize the weighting of significant predictors. The subjects recruited for this study were breast cancer patients who had received breast cancer surgery (ICD-9 cm 174–174.9) at one of three southern Taiwan medical centers during the 3-year period from June 2007, to June 2010. The registry data for the patients were randomly allocated to three datasets, one for training (n = 824), one for testing (n = 177), and one for validation (n = 177). Prediction performance comparisons revealed that all performance indices for the DNN model were significantly (p < 0.001) higher than in the other forecasting models. Notably, the best predictor of 10-year survival after breast cancer surgery was the preoperative Physical Component Summary score on the SF-36. The next best predictors were the preoperative Mental Component Summary score on the SF-36, postoperative recurrence, and tumor stage. The deep-learning DNN model is the most clinically useful method to predict and to identify risk factors for 10-year survival after breast cancer surgery. Future research should explore designs for two-level or multi-level models that provide information on the contextual effects of the risk factors on breast cancer survival.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


2015 ◽  
Vol 32 (6) ◽  
pp. 821-827 ◽  
Author(s):  
Enrique Audain ◽  
Yassel Ramos ◽  
Henning Hermjakob ◽  
Darren R. Flower ◽  
Yasset Perez-Riverol

Abstract Motivation: In any macromolecular polyprotic system—for example protein, DNA or RNA—the isoelectric point—commonly referred to as the pI—can be defined as the point of singularity in a titration curve, corresponding to the solution pH value at which the net overall surface charge—and thus the electrophoretic mobility—of the ampholyte sums to zero. Different modern analytical biochemistry and proteomics methods depend on the isoelectric point as a principal feature for protein and peptide characterization. Protein separation by isoelectric point is a critical part of 2-D gel electrophoresis, a key precursor of proteomics, where discrete spots can be digested in-gel, and proteins subsequently identified by analytical mass spectrometry. Peptide fractionation according to their pI is also widely used in current proteomics sample preparation procedures previous to the LC-MS/MS analysis. Therefore accurate theoretical prediction of pI would expedite such analysis. While such pI calculation is widely used, it remains largely untested, motivating our efforts to benchmark pI prediction methods. Results: Using data from the database PIP-DB and one publically available dataset as our reference gold standard, we have undertaken the benchmarking of pI calculation methods. We find that methods vary in their accuracy and are highly sensitive to the choice of basis set. The machine-learning algorithms, especially the SVM-based algorithm, showed a superior performance when studying peptide mixtures. In general, learning-based pI prediction methods (such as Cofactor, SVM and Branca) require a large training dataset and their resulting performance will strongly depend of the quality of that data. In contrast with Iterative methods, machine-learning algorithms have the advantage of being able to add new features to improve the accuracy of prediction. Contact: [email protected] Availability and Implementation: The software and data are freely available at https://github.com/ypriverol/pIR. Supplementary information: Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 7 (5) ◽  
pp. 1538-1544
Author(s):  
Xin Li ◽  
Hai-yan An ◽  
Yi Zhao ◽  
Mingli Ji ◽  
Jing An ◽  
...  

To study the effect of rapid rehabilitation nursing on patients’ quality of life and pain level during the perioperative period of radical breast cancer surgery. Methods: 126 patients who were hospitalized in our hospital from January 2018 to February 2020 and underwent radical breast cancer surgery were divided into control group and rapid rehabilitation group according to the perioperative period intervention method. Routine nursing intervention and rapid rehabilitation nursing intervention were used respectively. The general conditions of the two groups were recorded, and the differences of T cell subsets before operation and 3 days after operation were detected. Visual analogue pain (VAS) score was used to evaluate the changes of pain degree at 1 day, 3 days and 5 days after operation and on the day of discharge. Postoperative complications and satisfaction were compared between the two groups. Quality of life (QOL) was assessed at 1 month and 3 months after operation using the CARES-SF score. Results: Anesthesia waking time (26.12 ± 5.77) min, off-bed activity time (14.25 ± 2.87) h and hospital stay (7.82 ± 2.15) d in the rapid rehabilitation group were shorter than those in the control group (P < 0.05). The operation time (92.02 ± 14.78) min and intraoperative blood loss (57.96 ± 13.96) mL in the rapid rehabilitation group were not significantly different from those in the control group (P > 0.05). In the control group, 3d after operation, T lymphocyte subsets were decreased gradually than that before operation (P < 0.05), CD3+ was decreased 3d after operation than that before operation in the rapid rehabilitation group (P < 0.05), but CD4+, CD8+, CD4+ / CD8 + 3d after operation had no significant difference than that before operation (P > 0.05). In rapid rehabilitation group, T lymphocyte subsets at 3d after operation were higher than those in the control group (P < 0.05). The postoperative complication rate of the rapid rehabilitation group was lower than that of the control group, and the satisfaction degree was higher than that of the control group, with significant difference (P < 0.05). After follow-up, it was found that the scores of qualities of life, such as physiology, psychosocial, marriage, sexual life and relationship with medical staff in the rapid rehabilitation group were lower than those in the control group at 1 month and 3 months after operation (P < 0.05). Conclusion: The concept of rapid rehabilitation nursing can stabilize the immune function of patients after radical breast cancer surgery, promote the postoperative rehabilitation and improve the quality of life after operation.


2021 ◽  
Author(s):  
Fang He ◽  
John H Page ◽  
Kerry R Weinberg ◽  
Anirban Mishra

BACKGROUND The current COVID-19 pandemic is unprecedented; under resource-constrained setting, predictive algorithms can help to stratify disease severity, alerting physicians of high-risk patients, however there are few risk scores derived from a substantially large EHR dataset, using simplified predictors as input. OBJECTIVE To develop and validate simplified machine learning algorithms which predicts COVID-19 adverse outcomes, to evaluate the AUC (area under the receiver operating characteristic curve), sensitivity, specificity and calibration of the algorithms, to derive clinically meaningful thresholds. METHODS We conducted machine learning model development and validation via cohort study using multi-center, patient-level, longitudinal electronic health records (EHR) from Optum® COVID-19 database which provides anonymized, longitudinal EHR from across US. The models were developed based on clinical characteristics to predict 28-day in-hospital mortality, ICU admission, respiratory failure, mechanical ventilator usages at inpatient setting. Data from patients who were admitted prior to Sep 7, 2020, is randomly sampled into development, test and validation datasets; data collected from Sep 7, 2020 through Nov 15, 2020 was reserved as prospective validation dataset. RESULTS Of 3.7M patients in the analysis, a total of 585,867 patients were diagnosed or tested positive for SARS-CoV-2; and 50,703 adult patients were hospitalized with COVID-19 between Feb 1 and Nov 15, 2020. Among the study cohort (N=50,703), there were 6,204 deaths, 9,564 ICU admissions, 6,478 mechanically ventilated or EMCO patients and 25,169 patients developed ARDS or respiratory failure within 28 days since hospital admission. The algorithms demonstrated high accuracy (AUC = 0.89 (0.89 - 0.89) on validation dataset (N=10,752)), consistent prediction through the second wave of pandemic from September to November (AUC = 0.85 (0.85 - 0.86) on post-development validation (N= 14,863)), great clinical relevance and utility. Besides, a comprehensive 386 input covariates from baseline and at admission was included in the analysis; the end-to-end pipeline automates feature selection and model development process, producing 10 key predictors as input such as age, blood urea nitrogen, oxygen saturation, which are both commonly measured and concordant with recognized risk factors for COVID-19. CONCLUSIONS The systematic approach and rigorous validations demonstrate consistent model performance to predict even beyond the time period of data collection, with satisfactory discriminatory power and great clinical utility. Overall, the study offers an accurate, validated and reliable prediction model based on only ten clinical features as a prognostic tool to stratifying COVID-19 patients into intermediate, high and very high-risk groups. This simple predictive tool could be shared with a wider healthcare community, to enable service as an early warning system to alert physicians of possible high-risk patients, or as a resource triaging tool to optimize healthcare resources. CLINICALTRIAL N/A


Sign in / Sign up

Export Citation Format

Share Document