scholarly journals Modeling and Fuzzy Logic Control of the Doubly Fed Induction Generator used in Wind Power and Application to the Industrial Context with an Equivalent Photovoltaic System

In this paper, we are first going to present two different renewable energy systems based on wind and photovoltaic energy in order to provide an industrial site with electrical power. This study will continue with the sizing of these systems and the assessment of their performances through a technical and economic comparison. The results show that wind energy have a low impact and a reasonable economic cost. In the second part of this paper, we are going to focus on the modelling of a Doubly Fed Induction Generator (DFIG) used in wind systems in order to compare its performances to a squirrel cage generator (SCG). Final part has been attempted to presents the comparative study of Proportional Integral (PI), Proportional Integral Derivative (PID) and fuzzy controllers. The simulations of the operation of the different generators are done with MATLAB/SIMULINK and our results are presented and analysed at the end of this work

Author(s):  
Vijayalaxmi Munisamy ◽  
Nayagam Shanmuga Vadivoo ◽  
Vaithilingam Devasena

The major purpose of this work is to design the controllers for controlling the variable speed, variable pitch wind turbine (WT) with doubly fed induction generator (DFIG). Vector control strategy is adopted for controlling the DFIG active and reactive power. Generator torque is control to provide the regulated real power with minimum fluctuation. The fixed gain proportional-integral (PI) controller designed to the converter of rotor side and grid side has limited operating range and inherent overshoot. Gain scheduling PI controller is designed to minimize the overshoot and fluctuation exists in proportional-integral controller. Since DFIG based wind energy conversion system (WECS) works in uncertain wind speed, stochastic distribution control (SDC) method is proposed to control the probability distribution function (PDF) of DFIG based WECS. It copes with nonlinearities in the WECS and contiguous variations at operating point and provides satisfactory performance for the whole operating region. It improves the performance together with power quality of generated electric power thereby maximizing the lifespan of installation and ensures secure and acceptable operation of the DFIG based WECS.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850153 ◽  
Author(s):  
Bilel Touaiti ◽  
Hechmi Ben Azza ◽  
Mongi Moujahed ◽  
Mohamed Jemli

This paper presents a fault-tolerant Voltage Source Converter (VSC) for Field Oriented Control (FOC) of a stand-alone Doubly Fed Induction Generator (DFIG) connected to a DC load. In the proposed topology, the stator of the DFIG is connected to a DC load through a diode rectifier, while the rotor is connected to the DC load through a VSC. This topology allows the integration of DFIG in the hybrid system with other sources of production and storage, such as photovoltaic system, connected to the same DC bus. The fault-tolerant VSC consists in incorporating a fourth leg to replace the faulted leg. A fault detection scheme for switch device open-circuit faults is proposed in this study. The novelty of this method consists in analyzing the rotor currents within normal and faulty operating modes. Simulation results are presented for a 3.7[Formula: see text]kW DFIG-DC system with single open-circuit faults that validate the methods presented in this study. The effectiveness of the proposed fault detection method has been validated experimentally by using dSpace DS1104 control board based on TMS320F240 real time Digital Signal Processor (DSP).


2021 ◽  
pp. 70-78
Author(s):  
M. M. Metwally ◽  
M. K. Ratib ◽  
M.M. Aly ◽  
A.M. Abdel‑Rahim

In recent times, various types of wind generators have been linked to the power grids globally and the focus has been to control them to be more efficient and reliable. This study concisely discusses performance analysis, modeling, and assessment of different wind generators (permanent magnet synchronous generator, doubly-fed induction generator, squirrel cage induction generator), covering their benefits, drawbacks, and impact on the electric power systems. This comparison aims to guarantee that their technical and economic evaluations are comparable, allowing engineers to make a more informed decision about which generator is best suitable for their installation. Findings for the investigated wind generators lead to significant observations about their application fields, such as permanent magnet synchronous generator outperforms doubly-fed induction generator and squirrel cage induction generator, especially during grid disruptions; on the other hand, squirrel cage induction generator is simple and inexpensive.


Sign in / Sign up

Export Citation Format

Share Document