scholarly journals Preventing Cryptographic Attacks in Iot using Lightweight P-Box Permutation Encryption

Internet of Things (IoT) is a leading technology, where numerous sensors with the ability to exchange information over the internet are involved. It supports various applications ranging from smart home to smart city including smart grid for calculating electricity tariff, real time monitoring and controlling traffic, Co2 emission level finding etc. Research advancements in IoT facilitates us to control or monitor the things remotely and take actions accordingly. Efficient working of the IoT, involves continuous exchange of information between the nodes which should be executed in trusted environment as this data is confidential and only trusted nodes should handle it. Current research work in IoT suggests the confidentiality mechanisms which are heavyweight and not suitable in IoT scenario. So there is a need for lightweight confidentiality mechanism. In this paper we have shown how lightweight P-Box permutation encryption algorithm can be effective in IoT. We have compared this encryption algorithm with PRESENT protocol and our results show that lightweight P-Box permutation algorithm took less time. To prove that our encryption algorithm is better w.r.t. security, we have also carried out known plaintext attack and chosen plaintext attack and shown that lightweight P-Box permutation encryption algorithm is resistant to both of these attacks. Further we have used this technique to transfer the smart meter data in Smart Grid and shown that the data exchanged between the two nodes in confidential manner

Author(s):  
Showkat Ahmad Bhat ◽  
Amandeep Singh

Background & Objective: Digital multimedia exchange between different mobile communication devices has increased rapidly with the invention of the high-speed data services like LTE-A, LTE, and WiMAX. However, there are always certain security risks associated with the use of wireless communication technologies. Methods: To protect the digital images against cryptographic attacks different image encryption algorithms are being employed in the wireless communication networks. These algorithms use comparatively less key spaces and accordingly offer inadequate security. The proposed algorithm described in this paper based on Rubik’s cube principle because of its high confusion and diffusion properties, Arnold function having effective scrambling power, blocking cipher with block encryption and permutation powers. The main strength of the proposed algorithm lies in the large key spaces and the combination of different high power encryption techniques at each stage of algorithm. The different operations employed on the image are with four security keys of different key spaces at multiple stages of the algorithm. Results & Conclusion: Finally, the effectiveness and the security analysis results shows that the proposed image encryption algorithm attains high encryption and security capabilities along with high resistance against cryptanalytic attacks, differential attacks and statistical attacks.


Author(s):  
Matthew Gough ◽  
Sergio Santos ◽  
Tarek Alskaif ◽  
Mohammad Javadi ◽  
Rui Castro ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Sang-Soo Yeo ◽  
Dae-il Park ◽  
Young-Ae Jung

This paper presents the vulnerabilities analyses of KL scheme which is an ID-based authentication scheme for AMI network attached SCADA in smart grid and proposes a security-enhanced authentication scheme which satisfies forward secrecy as well as security requirements introduced in KL scheme and also other existing schemes. The proposed scheme uses MDMS which is the supervising system located in an electrical company as a time-synchronizing server in order to synchronize smart devices at home and conducts authentication between smart meter and smart devices using a new secret value generated by an OTP generator every session. The proposed scheme has forward secrecy, so it increases overall security, but its communication and computation overhead reduce its performance slightly, comparing the existing schemes. Nonetheless, hardware specification and communication bandwidth of smart devices will have better conditions continuously, so the proposed scheme would be a good choice for secure AMI environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xudong He ◽  
Jian Wang ◽  
Jiqiang Liu ◽  
Enze Yuan ◽  
Kailun Wang ◽  
...  

The rapid development of the smart grid brings convenience to human beings. It enables users to know the real-time power supply capacity, the power quality, and the electricity price fluctuation of the grid. However, there are still some threats in the smart grid, which increase all kinds of expenses in the grid and cause great trouble to energy distribution. Among them, the man-made nontechnical loss (NTL) problem is particularly prominent. Recently, there are also some NTL detection programs. However, most of the schemes need huge amounts of supporting data and high labor costs. As a result, the NTL problem has not been well solved. In order to better avoid these risks, problems such as tampering of smart meter energy data, bypassing the smart meter directly connected to the grid, and imbalance between revenue and expenditure of the smart grid are tackled, and the threat scene of NTL is constructed. A hierarchical grid gateway blockchain is proposed and designed, and a new decentralized management MDMS system is constructed. The intelligent contract combined with the elliptic curve encryption technology is used to detect the storage and the acquisition of power data, and the detection of NTL problems is realized. At the same time, it has a certain ability to resist attacks such as replay, monitoring, and tampering. We tested the time consumption and throughput of this method on Hyperledger Fabric. At the same time, eight indexes of other methods proposed in the literature are compared. This method has a good effect.


2014 ◽  
Vol 960-961 ◽  
pp. 823-827
Author(s):  
Ying Pan ◽  
Bo Jiang

As an important part of Smart Grid, smart metering attracts more and more attention all over the world. It is the way for energy consumer to sense the benefit of smart grid directly. Smart meter is an advanced energy meter that measures consumption of electrical energy providing additional information compared to a conventional energy meter. This paper discusses various applications and technologies that can be integrated with a smart meter. Smart meters can be used not only from the supply side monitoring but also for the demand side management as well. It plays an important role to monitor the performance and the energy usage of the grid loadings and power quality. In addition, This paper gives a comprehensive view on the benefit of smart metering in power network such as energy efficiency improvement.


Author(s):  
Shigeaki Tanimoto ◽  
Rei Kinno ◽  
Motoi Iwashita ◽  
Tohru Kobayashi ◽  
Hiroyuki Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document