scholarly journals Influence of Different Powder-Suspended Dielectric on The EDM Characteristics of Inconel 825

The present work aims to study the influence of various powder-suspended dielectrics viz. aluminium (Al), graphite (C), and silicon (Si) on several EDM performance characteristics namely material removal rate (MRR), surface roughness (Ra), and radial overcut (ROC) of Inconel 825. Results indicate that the powder properties like thermal conductivity, electrical conductivity, density, and hardness have a major impact on the machining performance and the quality of the machined surface. It has been observed that the aluminium powder particles dispersed in EDM oil yield highest material removal rate as compared to the other powders whereas the silicon powder particles provide a better surface finish and least radial overcut.

Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Lei Guo ◽  
Xinrong Zhang ◽  
Shibin Chen ◽  
Jizhuang Hui

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.


Author(s):  
Sanjeev Kumar ◽  
Ajay Batish ◽  
Rupinder Singh ◽  
TP Singh

In the present study, the effect of cryogenic treatment on the machining performance of Ti–5Al–2.5Sn alpha titanium alloy was investigated during electric discharge machining. Untreated, shallow cryogenically treated (−110 ℃), and deep cryogenically treated (−184 ℃) titanium alloys were machined by varying current and pulse-on-time. The machining performance was measured in terms of higher material removal rate and microhardness and low tool wear rate and surface roughness. The results showed a significant improvement in the machining performance with deep cryogenically treated alloy when compared with shallow and untreated alloy. Current and pulse-on-time also affected the machinability of titanium alloy. Higher material removal rate and microhardness were observed when titanium alloy was machined at high current and pulse-on-time. During machining, carbon was deposited on the machined surface due to the breakdown of hydrocarbon dielectric at high temperature thereby, affecting its properties.


Author(s):  
Sundar Marimuthu ◽  
Bethan Smith

This manuscript discusses the experimental results on 300 W picosecond laser machining of aerospace-grade nickel superalloy. The effect of the laser’s energetic and beam scanning parameters on the machining performance has been studied in detail. The machining performance has been investigated in terms of surface roughness, sub-surface thermal damage, and material removal rate. At optimal process conditions, a picosecond laser with an average power output of 300 W can be used to achieve a material removal rate (MRR) of ∼140 mm3/min, with thermal damage less than 20 µm. Shorter laser pulse widths increase the material removal rate and reduce the resultant surface roughness. High scanning speeds improve the picosecond laser machining performance. Edge wall taper of ∼10° was observed over all the picosecond laser machined slots. The investigation demonstrates that high-power picosecond lasers can be used for the macro-machining of industrial components at an acceptable speed and quality.


Author(s):  
VG Ladeesh ◽  
R Manu

The electrically non-conductive materials like glass, ceramics, quartz, etc. are of great interest for many applications in modern industries. Machining them with high quality and at a faster rate is a challenging task. In this study, a novel technique called grinding aided electrochemical discharge drilling (G-ECDD) is demonstrated which uses a hollow diamond core drill as the tool for performing electrochemical discharge machining of borosilicate glass. The new hybrid technique enhances the material removal rate and machining accuracy to several folds by combining the thermal melting action of discharges and grinding action of the abrasive tool. This paper presents the experimental investigation on the material removal rate during G-ECDD of glass while using different electrolytes. An attempt has been made to explore the influence of electrolyte temperature on G-ECDD performance by maintaining the electrolyte at different temperatures. Experiments were conducted using three different electrolytes which include NaOH, KOH, and the mixture of both. The results obtained from this study revealed that an increase in temperature will favor chemical etching as well as electrochemical reaction rate. Also, it was observed that heating the electrolyte leads to an increase in the bubble density and enhances the ion mobility. This causes the formation of gas film at a faster rate and thereby improving the discharge activity. Thus, machining will be done at a faster rate. Better results are obtained while using a mixture of NaOH and KOH. From the microscopic images of the machined surface, it was observed that material removal mechanism in G-ECDD is a combination of grinding action, electrochemical discharges, and chemical etching. Response surface methodology was adopted for studying the influence of process parameters on the performance of G-ECDD. The new technique of grinding aided electrochemical discharge drilling proved its potential to machine borosilicate glass and simultaneously offers good material removal rate, repeatability, and accuracy.


2010 ◽  
Vol 154-155 ◽  
pp. 1604-1613
Author(s):  
Mohammad Reza Shabgard ◽  
Babak Sadizadeh ◽  
Keivan Amini ◽  
Hamid Pourziaie

The correct selection of the machining parameters is one of the most significant issues to take into consideration in Ultrasonic-assisted Electrical Discharge Machining (US-EDM) and EDM processes. In the present work, a study has been made to develop and extract statistical models to show the relationship between important machining performance data (material removal rate (MRR), tool wear ratio (TWR) and surface roughness Ra) and the input machining parameters (pulse current, and pulse-on time) in the EDM and US-EDM of AISI H13. The models obtained were used to analyze the effects of input parameters on machining performance. In addition, a comparative study was carried out to investigate the effect of ultrasonic vibration of the workpiece on machining performance. The results show that Ultrasonic vibration of the workpiece can significantly reduce the inactive pulses and improves the stability of process. Also US-EDM is effective in attaining a high material removal rate (MRR) in finishing regime in comparison with conventional EDM. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models can adequately explain the performance within the limits of the factors being studied.


2021 ◽  
Vol 19 (5) ◽  
pp. 437-447
Author(s):  
Fahad Kazi ◽  
C.A Waghmare ◽  
M.S Sohani

Electric discharge machining is an advanced machining technique. Spark is initiated between the tool and work piece interface which has a gap between them. Low material removal rate as well as low surface finish is a major concern of this process. Therefore, Powder mixed electric discharge machining is developed. In PMEDM process, powders like silicon, aluminium, chromium, manganese, etc. are circulated along with dielectric fluid in a particular proportion. In this present study, aluminium powder is mixed in the dielectric fluid. The responses such as material removal rate, tool wear rate and surface roughness are measured by considering current, pulse on time and aluminium powder concentration as process parameters. Response surface methodology along with Fuzzy AHP TOPSIS and Grey relational analysis are used for optimization.


Author(s):  
R Rajeswari ◽  
MS Shunmugam

Electrical discharge machining is used in the machining of complicated shapes in hardened molds and dies. In rough die-sinking stage, attempts are made to enhance material removal rate with a consequential reduction in cycle time. Powder mix and ultrasonic assistance are employed in the electrical discharge machining process to create gap conditions favoring material removal. In the present work, experiments are carried out on hardened D3 die steel using full-factorial design based on three levels of voltage, current and pulse on time. The gap phenomena in graphite powder-mixed and ultrasonic-assisted rough electrical discharge machining are studied using a detailed analysis of pulse shapes and their characteristic trains. Two new parameters, namely, energy expended over a second ( E) and performance factor ( PF) denoting the ratio of energy associated with sparks to total discharge energy, bring out gap conditions effectively. In comparison with the conventional electrical discharge machining for the selected condition, it is seen that the graphite powder mixed in the dielectric enhances the material removal rate by 20.8% with E of 215 J and PF of 0.227, while these values are 179.8 J and 0.076 for ultrasonic-assisted electrical discharge machining with marginal reduction of 3.9%. Cross-sectional images of workpieces also reveal the influence of electrical discharge machining conditions on the machined surface. The proposed approach can be extended to different powder mix and ultrasonic conditions to identify condition favoring higher material removal.


Author(s):  
Xiaokang Chen ◽  
Jianping Zhou ◽  
Kedian Wang ◽  
Yan Xu

Short electric arc machining is a recently developed high-efficiency electrical discharge machining technology. Material removal rate, tool mass wear ratio ([Formula: see text]), and workpiece surface roughness ( Ra) are important indexes used to evaluate the machining performance of short electric arc machining. In order to obtain better machining effect, the nickel-based superalloy GH4169 is machined by graphite in this article. The influence of voltage, duty cycle, and flushing pressure on short electric arc machining performance is then investigated under different tool polarity conditions. Experimental results show that higher material removal rate and lower [Formula: see text] can be obtained by negative polarity machining, while positive polarity machining can produce better surface quality. To investigate the cause of this difference, the surface integrity of GH4169 machined by different tool polarity is studied from macro and micro perspectives.


2015 ◽  
Vol 766-767 ◽  
pp. 668-673
Author(s):  
S. Senthamilperarasu ◽  
P. Padmini ◽  
B. Shanmuganathan ◽  
N.R.R. Anbusagar ◽  
P. Sengottuvel

The Electrical Discharge Machine (EDM), parameters are investigated during the machining of Inconel 825 by using different tool geometry of zirconium copper electrode. Demand for better MRR, SR, and lower Tool Wear Rate are increasing recently for all materials, the low rigidity and high material removal rate of Inconel alloy offers a challenging task in obtaining output responses. The analysis of output responses such as Metal Removal Rate (MRR) of Inconel 825 material is carried out an excellent result can be obtained by using Taguchi L16 Orthogonal Array under different conditions of Parameters. The response of MRR is considered for improving machining efficiency. Optimal combination of parameters was obtained Taguchi optimization technique. The confirmation experiments results shows that the significant improvement in output responses was obtained. ANOVA have been used to analyze the contribution of individual parameters on Material Removal Rate. The experimental result demonstrates that the Taguchi method satisfies the practical requirements.


Sign in / Sign up

Export Citation Format

Share Document