scholarly journals Brain Tumor Classification and Segmentation using DTCW Transform, Back Propagation Neural Network and Spatial Fuzzy C-Means Clustering

A novel method is presented in this paper for finding brain tumor and classifying it using the back-propagation neural network is proposed. Spatial Fuzzy C-Means clustering is utilized for the segmentation of image to identify the influenced area of brain MRI picture. Automated detection of tumors in brain MR images is urgent in many diagnosis processes. Because of noise, blurred edges, the detection, and classification of brain tumor are very difficult. This paper presents one programmed brain tumor identification strategy to expand the exactness and yield and diminishing the determination time. The objective is ordering the tissues to three classes of typical, start and malignant. The size and the location tumor is very important for doctors for defining the treatment of tumor. The proposed determination strategy comprises of four phases, pre-processing of MR images, feature extraction, and classification. The features are extracted using Dual-Tree Complex wavelet transformation (DTCWT). Back Propagation Neural Network (BPN) is employed for finding brain tumor in MRI images. In the last stage, a productive scheme is proposed for segmentation depends on the Spatial Fuzzy C-Means Clustering. The performance analysis clearly proves that the proposed scheme is more efficient and the efficiency of the scheme is measured with sensitivity and specificity. The evaluation is performed on the image data set of 15 MRI images of brain.

2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


2016 ◽  
Vol 7 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Suruchi Chawla

In this paper novel method is proposed using hybrid of Genetic Algorithm (GA) and Back Propagation (BP) Artificial Neural Network (ANN) for learning of classification of user queries to cluster for effective Personalized Web Search. The GA- BP ANN has been trained offline for classification of input queries and user query session profiles to a specific cluster based on clustered web query sessions. Thus during online web search, trained GA –BP ANN is used for classification of new user queries to a cluster and the selected cluster is used for web page recommendations. This process of classification and recommendations continues till search is effectively personalized to the information need of the user. Experiment was conducted on the data set of web user query sessions to evaluate the effectiveness of Personalized Web Search using GA optimized BP ANN and the results confirm the improvement in the precision of search results.


1999 ◽  
Vol 39 (1) ◽  
pp. 451 ◽  
Author(s):  
H. Crocker ◽  
C.C. Fung ◽  
K.W. Wong

The producing M. australis Sandstone of the Stag Oil Field is a bioturbated glauconitic sandstone that is difficult to evaluate using conventional methods. Well log and core data are available for the Stag Field and for the nearby Centaur–1 well. Eight wells have log data; six also have core data.In the past few years artificial intelligence has been applied to formation evaluation. In particular, artificial neural networks (ANN) used to match log and core data have been studied. The ANN approach has been used to analyse the producing Stag Field sands. In this paper, new ways of applying the ANN are reported. Results from simple ANN approach are unsatisfactory. An integrated ANN approach comprising the unsupervised Self-Organising Map (SOM) and the Supervised Back Propagation Neural Network (BPNN) appears to give a more reasonable analysis.In this case study the mineralogical and petrophysical characteristics of a cored well are predicted from the 'training' data set of the other cored wells in the field. The prediction from the ANN model is then used for comparison with the known core data. In this manner, the accuracy of the prediction is determined and a prediction qualifier computed.This new approach to formation evaluation should provide a match between log and core data that may be used to predict the characteristics of a similar uncored interval. Although the results for the Stag Field are satisfactory, further study applying the method to other fields is required.


2015 ◽  
Vol 8 (12) ◽  
pp. 5089-5097 ◽  
Author(s):  
T. M. Gray ◽  
R. Bennartz

Abstract. Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaitén, southern Chile, 2008; Puyehue-Cordón Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12–11, 11–8.6, 11–7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1) and no ash (0) and SO2-rich ash (1) and no SO2-rich ash (0) and used as output. When neural network output was compared to the test data set, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.


2013 ◽  
Vol 441 ◽  
pp. 343-346 ◽  
Author(s):  
Ying Hu ◽  
Li Min Sun ◽  
Sheng Chen Yu ◽  
Jiang Lan Huang ◽  
Xiao Ju Wang ◽  
...  

In order to improve the detection rate of intruders in coal mine disaster warning internet of things, and to solve the problem that the back propagate neural network (BPNN) is invalid when these initial weight and threshold values of BPNN are chosen impertinently, Genetic Algorithms (GA) s characteristic of getting whole optimization value was combined with BPNNs characteristic of getting local precision value with gradient method. After getting an approximation of whole optimization value of weight and threshold values of BPNN by GA, the approximation was used as first parameter of BPNN, to train (educate) the BPNN again (in other words, learning). The educated BPNN was used to recognize intruders in internet of things. Experiment results shown that this method was useful and applicable, and the detection right rate of intruders was above 95% for the KDD CUP 1999 data set.


Author(s):  
T. Zh. Mazakov ◽  
D. N. Narynbekovna

Now a day’s security is a big issue, the whole world has been working on the face recognition techniques as face is used for the extraction of facial features. An analysis has been done of the commonly used face recognition techniques. This paper presents a system for the recognition of face for identification and verification purposes by using Principal Component Analysis (PCA) with Back Propagation Neural Networks (BPNN) and the implementation of face recognition system is done by using neural network. The use of neural network is to produce an output pattern from input pattern. This system for facial recognition is implemented in MATLAB using neural networks toolbox. Back propagation Neural Network is multi-layered network in which weights are fixed but adjustment of weights can be done on the basis of sigmoidal function. This algorithm is a learning algorithm to train input and output data set. It also calculates how the error changes when weights are increased or decreased. This paper consists of background and future perspective of face recognition techniques and how these techniques can be improved.


2019 ◽  
Vol 15 (10) ◽  
pp. 155014771988313 ◽  
Author(s):  
Chi Hua ◽  
Erxi Zhu ◽  
Liang Kuang ◽  
Dechang Pi

Accurate prediction of the generation capacity of photovoltaic systems is fundamental to ensuring the stability of the grid and to performing scheduling arrangements correctly. In view of the temporal defect and the local minimum problem of back-propagation neural network, a forecasting method of power generation based on long short-term memory-back-propagation is proposed. On this basis, the traditional prediction data set is improved. According to the three traditional methods listed in this article, we propose a fourth method to improve the traditional photovoltaic power station short-term power generation prediction. Compared with the traditional method, the long short-term memory-back-propagation neural network based on the improved data set has a lower prediction error. At the same time, a horizontal comparison with the multiple linear regression and the support vector machine shows that the long short-term memory-back-propagation method has several advantages. Based on the long short-term memory-back-propagation neural network, the short-term forecasting method proposed in this article for generating capacity of photovoltaic power stations will provide a basis for dispatching plan and optimizing operation of power grid.


Sign in / Sign up

Export Citation Format

Share Document