Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network

2021 ◽  
Vol 293 ◽  
pp. 112808
Author(s):  
Bo Ke ◽  
Hoang Nguyen ◽  
Xuan-Nam Bui ◽  
Hoang-Bac Bui ◽  
Trung Nguyen-Thoi

A novel method is presented in this paper for finding brain tumor and classifying it using the back-propagation neural network is proposed. Spatial Fuzzy C-Means clustering is utilized for the segmentation of image to identify the influenced area of brain MRI picture. Automated detection of tumors in brain MR images is urgent in many diagnosis processes. Because of noise, blurred edges, the detection, and classification of brain tumor are very difficult. This paper presents one programmed brain tumor identification strategy to expand the exactness and yield and diminishing the determination time. The objective is ordering the tissues to three classes of typical, start and malignant. The size and the location tumor is very important for doctors for defining the treatment of tumor. The proposed determination strategy comprises of four phases, pre-processing of MR images, feature extraction, and classification. The features are extracted using Dual-Tree Complex wavelet transformation (DTCWT). Back Propagation Neural Network (BPN) is employed for finding brain tumor in MRI images. In the last stage, a productive scheme is proposed for segmentation depends on the Spatial Fuzzy C-Means Clustering. The performance analysis clearly proves that the proposed scheme is more efficient and the efficiency of the scheme is measured with sensitivity and specificity. The evaluation is performed on the image data set of 15 MRI images of brain.


2019 ◽  
Vol 11 (2) ◽  
pp. 419 ◽  
Author(s):  
Piao Liu ◽  
Zhenhua Liu ◽  
Yueming Hu ◽  
Zhou Shi ◽  
Yuchun Pan ◽  
...  

Soil heavy metals affect human life and the environment, and thus, it is very necessary to monitor their contents. Substantial research has been conducted to estimate and map soil heavy metals in large areas using hyperspectral data and machine learning methods (such as neural network), however, lower estimation accuracy is often obtained. In order to improve the estimation accuracy, in this study, a back propagation neural network (BPNN) was combined with the particle swarm optimization (PSO), which led to an integrated PSO-BPNN method used to estimate the contents of soil heavy metals: Cd, Hg, and As. This study was conducted in Guangdong, China, based on the soil heavy metal contents and hyperspectral data collected from 90 soil samples. The prediction accuracies from BPNN and PSO-BPNN were compared using field observations. The results showed that, 1) the sample averages of Cd, Hg, and As were 0.174 mg/kg, 0.132 mg/kg, and 9.761 mg/kg, respectively, with the corresponding maximum values of 0.570 mg/kg, 0.310 mg/kg, and 68.600 mg/kg being higher than the environment baseline values; 2) the transformed and combined spectral variables had higher correlations with the contents of the soil heavy metals than the original spectral data; 3) PSO-BPNN significantly improved the estimation accuracy of the soil heavy metal contents, with the decrease in the mean relative error (MRE) and relative root mean square error (RRMSE) by 68% to 71%, and 64% to 67%, respectively. This indicated that the PSO-BPNN provided great potential to estimate the soil heavy metal contents; and 4) with the PSO-BPNN, the Cd content could also be mapped using HuanJing-1A Hyperspectral Imager (HSI) data with a RRMSE value of 36%, implying that the PSO-BPNN method could be utilized to map the heavy metal content in soil, using both field spectral data and hyperspectral imagery for the large area.


Author(s):  
Ebrahim. Aghajari ◽  
Dr.Mrs. Gharpure Damayanti

Hybrid image segmentation is proposed in this paper. The input image is firstly preprocessed in order to extract the features using Discrete Wavelet Transform (DWT) .The features are then fed to Fuzzy C-means algorithm which is unsupervised. The membership function created by Fuzzy C-means (FCM) is used as a target to be fed in neural network. Then the Back Propagation Neural network (BPN) has been trained based on targets which is obtained by (FCM) and features as input data. Combining the FCM information and neural network in unsupervised manner lead us to achieve better segmentation .The proposed algorithm is tested on various Berkeley database gray level images.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Author(s):  
Shikha Bhardwaj ◽  
Gitanjali Pandove ◽  
Pawan Kumar Dahiya

Background: In order to retrieve a particular image from vast repository of images, an efficient system is required and such an eminent system is well-known by the name Content-based image retrieval (CBIR) system. Color is indeed an important attribute of an image and the proposed system consist of a hybrid color descriptor which is used for color feature extraction. Deep learning, has gained a prominent importance in the current era. So, the performance of this fusion based color descriptor is also analyzed in the presence of Deep learning classifiers. Method: This paper describes a comparative experimental analysis on various color descriptors and the best two are chosen to form an efficient color based hybrid system denoted as combined color moment-color autocorrelogram (Co-CMCAC). Then, to increase the retrieval accuracy of the hybrid system, a Cascade forward back propagation neural network (CFBPNN) is used. The classification accuracy obtained by using CFBPNN is also compared to Patternnet neural network. Results: The results of the hybrid color descriptor depict that the proposed system has superior results of the order of 95.4%, 88.2%, 84.4% and 96.05% on Corel-1K, Corel-5K, Corel-10K and Oxford flower benchmark datasets respectively as compared to many state-of-the-art related techniques. Conclusion: This paper depict an experimental and analytical analysis on different color feature descriptors namely, Color moment (CM), Color auto-correlogram (CAC), Color histogram (CH), Color coherence vector (CCV) and Dominant color descriptor (DCD). The proposed hybrid color descriptor (Co-CMCAC) is utilized for the withdrawal of color features with Cascade forward back propagation neural network (CFBPNN) is used as a classifier on four benchmark datasets namely Corel-1K, Corel-5K and Corel-10K and Oxford flower.


Sign in / Sign up

Export Citation Format

Share Document